IA e Previsão Macroeconômica usando Python

A IA oferece métodos para compreender e prever variáveis agregadas da economia, como ciclos econômicos, decisões de políticas monetárias e previsões de diferentes indicadores econômicos. Utilizando algoritmos de Machine Learning os economistas podem analisar grandes volumes de dados econômicos para identificar padrões e tendências, fornecendo insights.

O Python torna o processo de análise e modelagem mais acessível e eficiente. Ao aplicar técnicas de IA na Macroeconomia, é possível melhorar nossa compreensão dos fenômenos econômicos e a precisão de nossas previsões, abrindo novas oportunidades para análise e tomada de decisões.

Existem várias abordagens e tipos de IA, cada uma com suas características e aplicações específicas. Uma que apresentou-se útil para a área de economia, especialmente na previsão de modelos, refere-se a IA Aprendizado de Máquina (Machine Learning).

IA Aprendizado de Máquina (Machine Learning) é uma das áreas mais proeminentes da IA atualmente, o aprendizado de máquina envolve algoritmos que permitem que sistemas computacionais aprendam a partir de dados sem serem explicitamente programados. Existem várias técnicas de aprendizado de máquina, incluindo aprendizado supervisionado, não supervisionado, e por reforço. Não somente para a previsão de dados, o aprendizado de máquina é também é utilizado em uma variedade de aplicações, incluindo reconhecimento de padrões, classificação, recomendação e entre diversas outras possibilidades.

Modelos macroeconômicos tradicionais geralmente possuem uma dependência de suposições simplificadas e relações lineares entre variáveis econômicas. No entanto, a economia é um sistema complexo e interconectado, com uma infinidade de variáveis que influenciam umas às outras de maneiras não-lineares. IA e Machine Learning podem lidar melhor com essa complexidade, permitindo previsões mais precisas e sofisticadas.

No presente exercício iremos mostrar o uso do IA Aprendizado de Máquina para realizar a previsão da probabilidade de recessão nos EUA, conforme três diferentes modelos de Machine Learning.

Prevendo a probabilidade de recessão

Para mostrar um exemplo do uso de machine learning para previsão de dados macroeconômicos, decidimos criar diferentes modelos para previsão de recessão nos Estados Unidos.

Aqui utilizaremos:

  1. Random Forest:
    • Random Forest é um algoritmo de aprendizado de máquina que opera criando uma “floresta” de árvores de decisão durante o treinamento.
    • Cada árvore na floresta é construída de forma independente e aleatória, utilizando amostras aleatórias do conjunto de dados de treinamento e um subconjunto aleatório de características em cada divisão.
    • Para fazer previsões, as árvores individuais votam em uma classe ou fornecem uma previsão contínua, e a previsão final é determinada pela votação ou pela média das previsões das árvores individuais.
    • Random Forest é conhecida por sua eficácia em lidar com uma variedade de problemas de classificação e regressão, e é frequentemente utilizada devido à sua capacidade de reduzir o overfitting e fornecer estimativas de importância das características.
  2. KNN:
    • KNN é um algoritmo de aprendizado de máquina utilizado tanto para classificação quanto para regressão.
    • Em KNN, as previsões são feitas com base na proximidade dos pontos de dados de treinamento no espaço de características.
    • Para fazer uma previsão para um novo ponto de dados, o algoritmo encontra os k pontos de dados de treinamento mais próximos ao novo ponto (onde k é um número especificado pelo usuário), e a classe ou o valor alvo desses pontos é usado para fazer a previsão.
    • KNN é um algoritmo simples de entender e implementar, mas pode ser computacionalmente caro para conjuntos de dados grandes e pode ser sensível à escala e à dimensionalidade.
  3. Regressão Logística:
    • A regressão logística é um algoritmo de aprendizado supervisionado utilizado para problemas de classificação binária.
    • Apesar do nome, a regressão logística é usada para prever a probabilidade de que um determinado ponto de dados pertença a uma classe ou categoria específica.
    • A regressão logística utiliza uma função logística para modelar a relação entre as características de entrada e a probabilidade de pertencer a uma classe.
    • Durante o treinamento, os parâmetros do modelo são ajustados para minimizar a diferença entre as previsões do modelo e os valores reais observados.

Estaremos utilizando as seguintes variáveis:

  • Taxa de juros do tesouro americano de curto (3 meses) e longo (10 anos) prazo,
  • Empregados (excluindo agrícolas)
  • Inflação.

Além disso é incluída uma variável de diferença entre a taxa de longo e a de curto prazo, para determinar o ângulo da curva de juros. Para todas as variáveis explicativas são incluídos os lags de 3,6,9 e 12 meses. Nossa variável de interesse é o indicador de recessão mensal produzido pelo NBER adiantado 12 meses. Ou seja, nosso interesse é prever se vai haver uma recessão nos 12 meses subsequentes.

Quer aprender mais?

Clique aqui para fazer seu cadastro no Boletim AM e baixar o código que produziu este exercício, além de receber novos exercícios com exemplos reais de análise de dados envolvendo as áreas de Data Science, Econometria, Machine Learning, Macroeconomia Aplicada, Finanças Quantitativas e Políticas Públicas diretamente em seu e-mail.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como analisar o Núcleo de Inflação no Brasil usando Python?

O Python se destaca como uma ferramenta robusta para análise de dados, permitindo a aplicação de uma ampla gama de técnicas em dados econômico-financeiros. Neste exercício, destacamos como a linguagem oferece uma facilidade muito grande na coleta de dados dos núcleos do IPCA diretamente do site do Banco Central, na manipulação eficiente desses dados e na construção de gráficos que facilitam a compreensão dos indicadores.

Propensity Score com Múltiplas Variáveis no R

O escore de propensão é provavelmente a maneira mais comum de agregar múltiplas variáveis de correspondência em um único valor que pode ser correspondido, ou seja, muito útil para a realização de pareamento.

O escore de propensão é a probabilidade estimada de que uma determinada observação teria sido tratada. A correspondência de escore de propensão muitas vezes significa selecionar um conjunto de observações de controle correspondidas com valores semelhantes do escore de propensão.

Análise regional da inflação com dados do IBGE usando Python

Os dados desagregados do IPCA fornecem informações detalhadas sobre o comportamento de preços no Brasil a nível de região metropolitana e município, possibilitando ricas análises regionais de dados. Neste artigo mostramos como acessar, processar e analisar estes dados utilizando o Python.

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.