Cadê a sazonalidade que estava aqui? O ocaso do desemprego em 2015.

O desemprego aumentou, leitor. Todo mundo sabe, certo? Era o último bastião a cair. Caiu. E o detalhe sórdido disso tudo é que a sazonalidade, típica da série de desemprego, se foi. Antes de mais nada, vamos ver um gráfico do desemprego, que mostra claramente o salto no período recente.

grafico01

Você, claro, tem toda a razão, pode alegar para mim que eu preciso controlar justamente a sazonalidade, para mostrar um aumento no período recente. Isso é feito abaixo.

grafico02

Convencido? Ok, passemos agora para o outro passo. Vamos mostrar a sazonalidade da série ao longo do ano com a função seasplot do pacote TStools. O gráfico abaixo ilustra a mediana do desemprego em cada um dos meses do ano.

grafico03

Finalmente, vamos mostrar o comportamento do desemprego em 2015 com a função monthplot. As linhas vermelhas mostram o desemprego em cada um dos meses do ano, acompanhadas pelas médias ilustradas pelas linhas pretas tracejadas. Já a linha azul mostra a trajetória do desemprego em 2015. Cadê a sazonalidade, leitor?

grafico05

E tinha gente preocupada com o ajuste ortodoxo da oposição... 🙁

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

O que é e como funcionam Sistemas Multi-Agentes

Sistemas multi-agentes (MAS) representam uma nova forma de estruturar aplicações de inteligência artificial, especialmente úteis para lidar com problemas complexos e distribuídos. Em vez de depender de um único agente generalista, esses sistemas são compostos por múltiplos agentes especializados que colaboram, competem ou se coordenam para executar tarefas específicas. Neste post, explicamos o que são os MAS, seus principais componentes (como LLMs, ferramentas e processos) e as arquiteturas mais comuns.

O que é um Vector Database e como criar um com LangChain

Nesta postagem, mostramos como construir um pipeline simples de RAG (Retrieval-Augmented Generation) usando o LangChain, o modelo Gemini 2.0 Flash e o Vector Database Chroma. Utilizamos como exemplo o Relatório de Inflação de junho de 2025 do Banco Central do Brasil. O fluxo envolve o download e leitura do PDF, divisão do texto com RecursiveCharacterTextSplitter, geração de embeddings com Gemini, armazenamento vetorial com Chroma e busca semântica para responder perguntas com base no conteúdo do relatório. É uma aplicação prática e didática para economistas que desejam integrar IA ao seu fluxo de análise.

Automatizando a Construção de Códigos em Python com LangGraph

Neste post, mostramos como construir um agente de código em Python utilizando LangGraph, LangChain e Gemini. A proposta é construir um protótipo para automatizar o ciclo completo de geração, execução e correção de código com o uso de LLMs, organizando o processo em um grafo de estados.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.