A inteligência artificial está evoluindo dos modelos que apenas respondem comandos para agentes capazes de agir, decidir e colaborar. O Agent Development Kit (ADK), do Google, surge como uma ferramenta para criar times de agentes, unindo LLMs a fluxos de trabalho bem definidos. Para economistas e cientistas de dados econômicos, isso abre espaço para automatizar rotinas complexas — como consultas em APIs e geração de relatórios — de maneira mais inteligente e autônoma.
O Relatório Focus, divulgado semanalmente pelo Banco Central, reúne as expectativas do mercado para variáveis-chave da economia brasileira, como inflação, câmbio, PIB e Selic. Neste projeto, transformamos esses dados em um dashboard interativo para acompanhar a acurácia das previsões ao longo do tempo.
Na análise de dados contemporânea, o uso de Modelos de Linguagem (LLMs) vem se consolidando como uma ferramenta poderosa para automatizar e aprimorar tarefas analíticas. Ao integrarmos LLMs a pacotes como o ellmer, podemos ampliar nossas capacidades de extração, interpretação e automação de dados no ambiente R. Neste post, exploramos o papel desses modelos e detalhamos como o ellmer opera dentro do universo da linguagem de programação R.
O AutoGen é um framework da Microsoft que permite criar agentes de IA colaborativos. Na área financeira, pode automatizar a coleta de dados, cálculos de indicadores e geração de relatórios. Este artigo apresenta os conceitos básicos e um exemplo aplicado a ações de empresas.
Este post apresenta um estudo de caso sobre como utilizar o LangGraph e modelos de linguagem para estruturar um sistema multiagente voltado à previsão do IPCA. O exercício cria um sistema que utiliza-se de personas analíticas que trabalham em paralelo, permitindo validar previsões, calcular métricas de erro e consolidar relatórios automatizados. A abordagem demonstra como fluxos multiagentes podem apoiar a análise econômica, oferecendo múltiplas perspectivas e maior consistência nos resultados.
GraphRAG é uma técnica de recuperação de informação para LLMs que utiliza grafos de conhecimento para conectar entidades e relações, permitindo estruturar informações complexas presentes em textos. Neste exercício, mostramos como transformar as atas do Copom em um grafo capaz de compreender essas entidades e relações, respondendo a perguntas complexas de forma contextualizada. Com Python e LangChain, todo o processo se torna automatizado, simples e altamente explorável.
A combinação de interfaces de usuário interativas com o poder dos grandes modelos de linguagem (LLMs) está abrindo um universo de possibilidades. Imagine criar um aplicativo web que não apenas exibe dados, mas também conversa com o usuário, respondendo a perguntas complexas com base em uma base de conhecimento específica. Usando Shiny para Python e ferramentas de IA como as do Google, isso é mais acessível do que nunca.
Implementação de um sistema Adaptive RAG em Python com LangChain e LangGraph, aplicado às atas do COPOM para gerar respostas rápidas, precisas e fundamentadas.
O exercício utiliza o LangGraph para criar personas fictícias de analistas econômicos, entrevistá-las com um especialista fictício e, a partir dessas interações, gerar relatórios técnicos usando LLMs, buscas na web e execução paralela.
A criação de agentes de Inteligência Artificial (IA) capazes de transformar dados brutos em visualizações claras e informativas está se tornando cada vez mais acessível. Esses agentes podem automatizar tarefas complexas, desde a coleta de dados de diversas fontes até a geração de gráficos e tabelas, permitindo que os usuários foquem na análise e na tomada de decisões. Este post explora o processo de construção de um agente de IA para visualização de dados, destacando as ferramentas e os conceitos fundamentais envolvidos.