Economia

IA e Previsão Macroeconômica usando Python

A IA oferece métodos para compreender e prever variáveis agregadas da economia, como ciclos econômicos, decisões de políticas monetárias e previsões de diferentes indicadores econômicos. Utilizando algoritmos de Machine Learning os economistas podem analisar grandes volumes de dados econômicos para identificar padrões e tendências, fornecendo insights. O Python torna o processo de análise e modelagem mais acessível e eficiente. Ao aplicar técnicas de IA na Macroeconomia, é possível melhorar nossa compreensão dos fenômenos econômicos e a precisão de nossas previsões, abrindo novas oportunidades para análise e tomada de decisões. No presente exercício iremos mostrar o uso do IA Aprendizado de Máquina para realizar a previsão da probabilidade de recessão nos EUA, conforme três diferentes modelos de Machine Learning.

Como construir uma Curva IS no Python

Neste post mostramos como podemos construir um modelo que descreve a Curva IS a partir da linguagem Python. Passamos por todo o processo de construção de um exercício de dados, realizando a coleta, o tratamento, a modelagem e a demonstração dos resultados encontrados.

Construindo um Modelo para o Spread Bancário no Brasil

O Spread Bancário é definido como a diferença entre o custo do empréstimo e a remuneração oferecida ao poupador. Neste exercício, propomos a elaboração de um modelo para analisar o Spread Bancário no contexto brasileiro, empregando uma abordagem de regressão linear múltipla. Para realizar essa análise, utilizamos a linguagem de programação Python como ferramenta principal.

Criando uma Regra de Taylor para o Brasil usando o Python

O termo “Regra de Bolso” pode ser entendido como um regra prática, basicamente um método aproximado para fazer algo, baseado na experiência prática. A Regra de Taylor propõe-se a ser utilizada com este intuito, visando determinar a taxa de juros básica da economia, usando um subconjunto da informação necessária para uma regra ótima do instrumento de política monetária. Neste artigo, veremos como podemos criar a Regra de Taylor facilmente usando o Python, tomando como base dados da economia brasileira.

Qual é a sensibilidade da taxa de desemprego em relação ao crescimento econômico?

A Lei de Okun é uma relação empírica que busca quantificar a relação entre a taxa de desemprego e a taxa de crescimento econômico. Ela foi proposta pelo economista Arthur Okun na década de 1960 e está presente em diversos livros textos de graduação. Buscamos através deste artigo investigar essa relação, descrevendo-a utilizando dados do Brasil. Usamos o Python para realizar todo o processo de análise de dados.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.