Estimando a Inércia Inflacionária usando o Python

Como que a inflação passada pode afetar a inflação presente? É possível mensurar esse efeito, isto é, o grau de persistência da inflação, por meio de um processo autorregressivo de ordem 1. Mostramos como construí-la utilizando o Python como ferramenta de coleta de dados, análise e ajuste do modelo.

Inércia ou simplesmente persistência não é exclusividade do processo inflacionário. Em uma leitura econométrica, pode-se dizer que a maior parte das variáveis macroeconômicas possui algum grau de persistência, ilustrado por uma autorregressividade positiva. Em outras palavras, se uma variável macroeconômica qualquer puder ser descrita por um processo autorregressivo de ordem um, como em

     \begin{align*} y_t = \alpha y_{t-1} + \varepsilon_t \end{align*}

onde  \alpha > 0 , então diz-se que a variável em questão apresenta algum grau de persistência. E o grau aqui é de suma importância. Isso porque, como sabemos do estudo de séries temporais, se \alpha estiver no intervalo aberto entre 0 e 1, o processo autorregressivo é dito estacionário.

Nesse caso, mesmo que haja um grau elevado de persistência (isto é, \alpha está mais próximo de 1), choques de oferta gerarão efeito, mas se dissiparão ao longo do tempo. Contudo, se \alpha for maior ou igual a 1, a série passa a não ser mais estacionária, o que implica em desvio permanente na ocorrência de um determinado choque sobre a variável em questão.

Isso dito, parece razoável supor que o coeficiente \alpha em 1 nos dará o grau de persistência, para qualquer variável macroeconômica ou de inércia, no caso específico da inflação.

No Python, é possível identificar a inércia inflacionário construindo um código que permita estimar o AR1 em uma janela de tempo, isto é, criar um rolling ARIMA(1,0,0) utilizando a biblioteca statsmodels.

Abaixo, ilustramos o resultado encontrado, tomando como base a variação mensal do IPCA, identificada pelo código 433 no Sistema Gerenciador de Séries Temporais, no período de janeiro de 2000 até abril de 2024. O modelo estimado utiliza uma amostra de 120 meses.

_____________________________________

Quer aprender mais?

Clique aqui para fazer seu cadastro no Boletim AM e baixar o código que produziu este exercício, além de receber novos exercícios com exemplos reais de análise de dados envolvendo as áreas de Data Science, Econometria, Machine Learning, Macroeconomia Aplicada, Finanças Quantitativas e Políticas Públicas diretamente em seu e-mail.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Medindo o Hiato do Produto do Brasil usando Python

Uma medida extremamente importante para a avaliação econômica de um país é o Hiato do Produto. Neste post, realizamos uma comparação das diferentes formas de estimação dessa variável não observável utilizando o Python como ferramenta de análise de dados.

Como analisar a contribuição para a Volatilidade de uma carteira de ações usando Python

A contribuição para a volatilidade fornece uma decomposição ponderada da contribuição de cada elemento do portfólio para o desvio padrão de todo o portfólio. Em termos formais, é definida pelo nome de contribuição marginal, que é basicamente a derivada parcial do desvio padrão do portfólio em relação aos pesos dos ativos. A interpretação da fórmula da contribuição marginal, entretanto, não é tão intuitiva, portanto, é necessário obter medidas que possibilitem analisar os componentes. Veremos portanto como calcular os componentes da contribuição e a porcentagem da contribuição. Vamos criar as respectivas medidas usando a linguagem de programação Python.

Analisando o impacto fiscal de propostas legislativas com IA

Todos os anos milhares de proposições legislativas são geradas na Câmara dos Deputados e Senado Federal, o que dificulta o trabalho de monitoramento feito por economistas, jornalistas e analistas de mercado. No entanto, ao empregar técnicas de engenharia de prompt e IA, podemos analisar estas milhares de proposições em questão de segundos. Neste exercício mostramos o caminho para esta automatização usando o Python.

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.