Os indexadores da Dívida Bruta viraram um gráfico interativo com o R

[et_pb_section admin_label="section"][et_pb_row admin_label="row"][et_pb_column type="4_4"][et_pb_text admin_label="Texto" background_layout="light" text_orientation="left" use_border_color="off" border_color="#ffffff" border_style="solid"]

Muita gente que eu conheço alega que aprender é só para quem lida com muita estatística e econometria, que não valeria o investimento já que o Excel cumpre todas as funções do dia a dia. Nesse espaço procuro mostrar que não é bem assim. Com ele é possível unificar todo o processo de coleta, tratamento, análise e apresentação de dados. Para ilustrar uma vez mais, imagine que você precisa fazer um gráfico mensal a partir de dados disponíveis on line. Sem o R, você provavelmente iria no site onde está o dado, o baixaria, abriria o excel e começaria a trabalhar, não é mesmo? Depois, claro, você copiaria o gráfico e colaria no Power Point. Daí faria seu slide para apresentar ao seu cliente ou mesmo ao seu gestor. Correto? Com o R, seria diferente...

Com o R, a primeira coisa a fazer é abrir o RStudio e começar o seu script. Nesse ambiente você automatizará a sua tarefa mensal, isto é, você fará isso uma vez, depois apenas rodará o script na próxima vez que precisar. Legal, né? Mas não é só isso. Você irá no site sim, onde estão os dados, mas apenas para pegar o link do arquivo que precisa, como abaixo.

http://www.bcb.gov.br/ftp/notaecon/Partggp.zip

Com esse link, você vai começar o seu script...

## Carregar pacotes
library(ggplot2)
library(XLConnect)
## Importar dados
temp = tempfile()
download.file('http://www.bcb.gov.br/ftp/notaecon/Partggp.zip',temp)
data = unzip(temp, files='Partggp.xls')
data = loadWorkbook(data)
dbgg = readWorksheet(data, sheet = 1, header = TRUE, 
 colTypes = 'numeric')
## Retirar linhas e colunas que não interessam
dbgg = dbgg[, -c(1,2,6,10,15,16,17)] # Retirar colunas desimportantes
dbgg = dbgg[complete.cases(dbgg),] # Retirar linhas com NA
## Nomear colunas
colnames(dbgg) = c('DBGG', 'Cambial Interna', 'Cambial Externa', 
 'IGP-M', 'IGP-DI', 'IPCA', 'SELIC', 'TJLP', 'TR', 
 'PRÉ-FIXADO')
## Criar vetor de datas para o gráfico e juntar datas e dados em um mesmo objeto
dates = seq(as.Date('2006-12-01'), as.Date('2016-12-01'), by='1 month')
dbgg = cbind(dates, dbgg)
## Gerar gráfico
theme_set(theme_minimal())

ggplot(dbgg, aes(x=dates))+
 xlab('')+ylab('% DBGG')+
 geom_area(aes(y=dbgg$SELIC, fill="SELIC"))+
 geom_area(aes(y=dbgg$`PRÉ-FIXADO`, fill="PRÉ-FIXADO"))+
 geom_area(aes(y=dbgg$IPCA, fill='IPCA'))+
 geom_area(aes(y=dbgg$`Cambial Externa`, fill='CAMBIAL EXTERNA'))+
 geom_area(aes(y=dbgg$`IGP-M`, fill='IGP-M'))+
 geom_area(aes(y=dbgg$TR, fill='TR'))+
 geom_area(aes(y=dbgg$`IGP-DI`, fill='IGP-DI'))+
 geom_area(aes(y=dbgg$`Cambial Interna`, fill='CAMBIAL INTERNA'))+
 geom_area(aes(y=dbgg$TJLP, fill='TJLP'))+
 scale_fill_manual("", 
 values = c("SELIC"="darkblue", 
 "PRÉ-FIXADO"="#f8766d",
 'IPCA'="orange",
 'CAMBIAL EXTERNA'="red",
 'IGP-M'="#9999CC",
 'TR'="darkred",
 'IGP-DI'="darkgreen",
 'CAMBIAL INTERNA'="#00ba38",
 'TJLP'="blue"))+
 theme(legend.position="bottom")+
 labs(title='Indexadores da Dívida Bruta brasileira',
 caption='Fonte: analisemacro.com.br com dados do Banco Central.')
 

Com esse código você gerará um gráfico bem bonito. Mas talvez você queira disponibilizar ele on line, para qualquer um acessar. Daí você pode complementar com o código abaixo

library(plotly)
g = ggplotly()
plotly_POST(g, filename = 'dbgg', sharing = 'public')

E pronto, aí está o seu gráfico, que você pode atualizar todo mês, executando o mesmo código acima... Bom, não? 🙂

 

_____________________________________

OBS: Para integrar o R com o Plotly, veja aqui.

[/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row admin_label="row" make_fullwidth="off" use_custom_width="off" width_unit="on" use_custom_gutter="off" padding_mobile="off" background_color="#8300e9" allow_player_pause="off" parallax="off" parallax_method="off" make_equal="off" parallax_1="off" parallax_method_1="off" column_padding_mobile="on"][et_pb_column type="1_2"][et_pb_text admin_label="Texto" background_layout="dark" text_orientation="left" use_border_color="off" border_color="#ffffff" border_style="solid"]

No nosso Curso de Análise de Conjuntura usando o R os alunos aprendem a coletar, tratar, analisar e apresentar dados macroeconômicos usando o poder do R/RStudio e do Beamer/LaTeX. Saiba mais sobre esse curso inovador clicando no botão abaixo!

[/et_pb_text][et_pb_button admin_label="Botão" button_url="https://analisemacro.com.br/cursos-de-r/analise-de-conjuntura/" url_new_window="off" button_text="Ir para o Curso de Análise de Conjuntura" button_alignment="center" background_layout="dark" custom_button="off" button_letter_spacing="0" button_use_icon="default" button_icon_placement="right" button_on_hover="on" button_letter_spacing_hover="0"] [/et_pb_button][/et_pb_column][et_pb_column type="1_2"][et_pb_text admin_label="Texto" background_layout="dark" text_orientation="left" use_border_color="off" border_color="#ffffff" border_style="solid"]

Relatórios, apresentações e exercícios macroeconométricos usando extensivamente o R são feitos no âmbito do Clube do Código, o espaço de compartilhamento de códigos da Análise Macro. Ainda não conhece o Clube?! Saiba mais abaixo.

[/et_pb_text][et_pb_button admin_label="Botão" button_url="https://analisemacro.com.br/clube-do-codigo/" url_new_window="off" button_text="Ir para o Clube do Código" button_alignment="center" background_layout="dark" custom_button="off" button_letter_spacing="0" button_use_icon="default" button_icon_placement="right" button_on_hover="on" button_letter_spacing_hover="0"] [/et_pb_button][/et_pb_column][/et_pb_row][/et_pb_section]

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Calculando o impulso de crédito no Python

Qual é o papel do crédito no crescimento da economia? Para analisar esta questão, calculamos o indicador de impulso de crédito para a economia brasileira e comparamos com o nível da atividade econômica usando o Python.

Analisando a Volatilidade de Longo Prazo do Ibovespa usando Python

Com base no modelo GARCH(1,1), realizamos realizar a modelagem da variância condicional dos log retornos diários do Ibovespa, abrangendo o período de janeiro de 2018 até dezembro de 2023. O objetivo principal é compreender a implementação desse modelo utilizando a linguagem de programação Python, além de conduzir uma análise do mercado acionário brasileiro ao longo do período amostral.

Ao concluirmos este exercício, teremos a capacidade de obter uma medida representativa da variância de longo prazo da série temporal. Essa medida poderá ser comparada com a variância histórica, permitindo-nos inferir se a volatilidade presente está atualmente inferior ou superior àquela projetada para o futuro. Essa análise contribuirá para uma melhor compreensão da dinâmica da volatilidade no mercado acionário brasileiro.

Construindo uma NAIRU para o Brasil usando Python

Um dos maiores desafios para aqueles que trabalham com dados econômicos é aliar a prática com a teoria. Para tanto, o uso do Python pode facilitar esse desafio, permitindo construir todos os passos de uma análise de dados. Demonstramos o poder da linguagem tomando como exemplo a construção da NAIRU para o Brasil.

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.