Fatores externos explicam a dinâmica do PIB?

A edição 59 do Clube do Código, de autoria de Renato Lerípio, aborda um tema comumente discutido entre economistas: fatores externos explicariam o a dinâmica do PIB brasileiro? Para responder a essa pergunta, foi estimado o seguinte modelo:

(1)   \begin{align*}PIB^{Brasil}_t = \alpha + \beta_1 PIB^{Externo}_t + \beta_2 \Delta TT_t + \beta_3TB^{10yr}_t + \beta_4 log(EMBI_t) + \beta_5 (TB^{10yr}_t \times log(EMBI_t)) + \epsilon_t\end{align*}

Os resultados da estimação apontam que o crescimento do PIB Externo e dos termos de troca são positivamente relacionados com o desempenho da economia brasileira, ao passo que o aumento dos juros dos títulos americanos e do risco se relacionam negativamente com a atividade nacional.

O ajuste do modelo também é bastante razoável, se levarmos em consideração o baixo nível de complexidade. Mais especificamente, as variáveis incluídas explicam cerca de 40% da variação observada no PIB brasileiro (R^2-ajustado) -- os 60% restantes seriam explicados por fatores domésticos, externos não capturados nas variáveis e erros de natureza estocástica.

Os códigos para replicar o modelo estão disponíveis no repositório privado do Clube do Código no github.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como criar um Agente de IA visualizador de dados

A criação de agentes de Inteligência Artificial (IA) capazes de transformar dados brutos em visualizações claras e informativas está se tornando cada vez mais acessível. Esses agentes podem automatizar tarefas complexas, desde a coleta de dados de diversas fontes até a geração de gráficos e tabelas, permitindo que os usuários foquem na análise e na tomada de decisões. Este post explora o processo de construção de um agente de IA para visualização de dados, destacando as ferramentas e os conceitos fundamentais envolvidos.

Criando um Simples Assistente de Pesquisa com LangGraph

O exercício utiliza o LangGraph para criar personas fictícias de analistas econômicos, entrevistá-las com um especialista fictício e, a partir dessas interações, gerar relatórios técnicos usando LLMs, buscas na web e execução paralela.

Construindo Corrective RAG (CRAG) com LangGraph

Este post explica o conceito de Agentic CRAG (Corrective Retrieval-Augmented Generation) e sua aplicação na análise das atas do COPOM. Mostramos como combinar recuperação de informações, avaliação de relevância, correção de consultas e busca externa em um fluxo estruturado com LangGraph.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.