Fatores externos explicam a dinâmica do PIB?

A edição 59 do Clube do Código, de autoria de Renato Lerípio, aborda um tema comumente discutido entre economistas: fatores externos explicariam o a dinâmica do PIB brasileiro? Para responder a essa pergunta, foi estimado o seguinte modelo:

(1)   \begin{align*}PIB^{Brasil}_t = \alpha + \beta_1 PIB^{Externo}_t + \beta_2 \Delta TT_t + \beta_3TB^{10yr}_t + \beta_4 log(EMBI_t) + \beta_5 (TB^{10yr}_t \times log(EMBI_t)) + \epsilon_t\end{align*}

Os resultados da estimação apontam que o crescimento do PIB Externo e dos termos de troca são positivamente relacionados com o desempenho da economia brasileira, ao passo que o aumento dos juros dos títulos americanos e do risco se relacionam negativamente com a atividade nacional.

O ajuste do modelo também é bastante razoável, se levarmos em consideração o baixo nível de complexidade. Mais especificamente, as variáveis incluídas explicam cerca de 40% da variação observada no PIB brasileiro (R^2-ajustado) -- os 60% restantes seriam explicados por fatores domésticos, externos não capturados nas variáveis e erros de natureza estocástica.

Os códigos para replicar o modelo estão disponíveis no repositório privado do Clube do Código no github.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Analisando a Volatilidade de Longo Prazo do Ibovespa usando Python

Com base no modelo GARCH(1,1), realizamos realizar a modelagem da variância condicional dos log retornos diários do Ibovespa, abrangendo o período de janeiro de 2018 até dezembro de 2023. O objetivo principal é compreender a implementação desse modelo utilizando a linguagem de programação Python, além de conduzir uma análise do mercado acionário brasileiro ao longo do período amostral.

Ao concluirmos este exercício, teremos a capacidade de obter uma medida representativa da variância de longo prazo da série temporal. Essa medida poderá ser comparada com a variância histórica, permitindo-nos inferir se a volatilidade presente está atualmente inferior ou superior àquela projetada para o futuro. Essa análise contribuirá para uma melhor compreensão da dinâmica da volatilidade no mercado acionário brasileiro.

Construindo uma NAIRU para o Brasil usando Python

Um dos maiores desafios para aqueles que trabalham com dados econômicos é aliar a prática com a teoria. Para tanto, o uso do Python pode facilitar esse desafio, permitindo construir todos os passos de uma análise de dados. Demonstramos o poder da linguagem tomando como exemplo a construção da NAIRU para o Brasil.

A Abordagem do Estudo de Eventos usando Python

A maioria das pesquisas em finanças está dedicada a investigar o efeito de um anúncio da companhia ou de um evento, sistêmico ou não, sobre o preço de uma ação. Esses estudos são conhecidos como “estudos de eventos”. Neste contexto, apresentaremos uma breve introdução à metodologia e demonstraremos como aplicá-la por meio de exemplos reais utilizando a linguagem de programação Python.

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.