Fatores externos explicam a dinâmica do PIB?

A edição 59 do Clube do Código, de autoria de Renato Lerípio, aborda um tema comumente discutido entre economistas: fatores externos explicariam o a dinâmica do PIB brasileiro? Para responder a essa pergunta, foi estimado o seguinte modelo:

(1)   \begin{align*}PIB^{Brasil}_t = \alpha + \beta_1 PIB^{Externo}_t + \beta_2 \Delta TT_t + \beta_3TB^{10yr}_t + \beta_4 log(EMBI_t) + \beta_5 (TB^{10yr}_t \times log(EMBI_t)) + \epsilon_t\end{align*}

Os resultados da estimação apontam que o crescimento do PIB Externo e dos termos de troca são positivamente relacionados com o desempenho da economia brasileira, ao passo que o aumento dos juros dos títulos americanos e do risco se relacionam negativamente com a atividade nacional.

O ajuste do modelo também é bastante razoável, se levarmos em consideração o baixo nível de complexidade. Mais especificamente, as variáveis incluídas explicam cerca de 40% da variação observada no PIB brasileiro (R^2-ajustado) -- os 60% restantes seriam explicados por fatores domésticos, externos não capturados nas variáveis e erros de natureza estocástica.

Os códigos para replicar o modelo estão disponíveis no repositório privado do Clube do Código no github.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Regimes da Política Monetária Brasileira com Markov Switching no Python

Este exercício analisa a política monetária brasileira utilizando modelos de Markov Switching Regression. O objetivo é identificar diferentes regimes de política monetária e como eles influenciam a taxa Selic, a meta de inflação e o hiato do produto. Usamos a linguagem de programação Python para o processo de coleta, tratamento, análise e modelagem dos dados.

Como criar janelas móveis de séries temporais usando o Python

Janelas Móveis/Deslizantes, ou Rolling Windows, são termos frequentes na análise de séries temporais. Mas o que são e como aplicá-las no Python? Neste tutorial, mostramos como essa ferramenta é essencial para a análise de dados utilizando como exemplo a correlação móvel de ações brasileiras.

Como incorporar choques em cenários de previsão?

Neste exercício mostramos como incorar choques no cenário de variáveis exógenas para fins de previsão. Usando como exemplo a previsão do IPCA, através de um modelo de machine learning, mostramos os cuidados a serem tomados e uma forma simples de definir o cenário com os choques. Ao final, apresentamos uma previsão com um suposto choque e uma previsão sem o choque para comparação.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.