Gráficos de Área empilhados com o R

[et_pb_section admin_label="section"][et_pb_row admin_label="row"][et_pb_column type="4_4"][et_pb_text admin_label="Texto" background_layout="light" text_orientation="left" use_border_color="off" border_color="#ffffff" border_style="solid"]

Hoje de manhã publiquei um código para um gráfico de área utilizando os indexadores da dívida bruta brasileira. O gráfico, entretanto, não estava empilhado, apenas sobreposto. Como a soma da participação dos indexadores tem que dá 100%, um gráfico empilhado talvez fique mais ilustrativo, não é mesmo? Para isso, é preciso fazer algumas modificações no código. Ilustro abaixo.

## Carregar pacotes
library(ggplot2)
library(XLConnect)
library(reshape2)
library(xts)
## Importar dados
temp = tempfile()
download.file('http://www.bcb.gov.br/ftp/notaecon/Partggp.zip',temp)
data = unzip(temp, files='Partggp.xls')
data = loadWorkbook(data)
dbgg = readWorksheet(data, sheet = 1, header = TRUE, 
 colTypes = 'numeric')
## Retirar linhas e colunas que não interessam
dbgg = dbgg[, -c(1,2,6,10,15,16,17)] # Retirar colunas desimportantes
dbgg = dbgg[complete.cases(dbgg),-1] # Retirar linhas com NA e coluna 1
## Nomear colunas
colnames(dbgg) = c('Cambial Interna', 'Cambial Externa', 
 'IGP-M', 'IGP-DI', 'IPCA', 'SELIC', 'TJLP', 'TR', 
 'PRÉ-FIXADO')
## Criar vetor de datas para o gráfico 
dates = seq(as.Date('2006-12-01'), as.Date('2016-12-01'), by='1 month')
## Ordenar séries conforme vetor de datas e criar novo data frame 
dbgg = xts(dbgg, order.by=dates)
dbgg = data.frame(time = index(dbgg), melt(as.data.frame(dbgg)))
colnames(dbgg) = c('time', 'Indexador', 'value')
## Gerar gráfico
theme_set(theme_bw())

ggplot(dbgg, aes(x = time, y = value)) + 
 geom_area(aes(colour = Indexador, fill = Indexador))+
 xlab('')+ylab('Participação Percentual')+
 labs(title='Indexadores da Dívida Bruta brasileira',
 caption='analisemacro.com.br')

 

E o resultado vai abaixo...

[/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row admin_label="row" make_fullwidth="off" use_custom_width="off" width_unit="on" use_custom_gutter="off" padding_mobile="off" background_color="#8300e9" allow_player_pause="off" parallax="off" parallax_method="off" make_equal="off" parallax_1="off" parallax_method_1="off" column_padding_mobile="on"][et_pb_column type="1_2"][et_pb_text admin_label="Texto" background_layout="dark" text_orientation="left" use_border_color="off" border_color="#ffffff" border_style="solid"]

No nosso Curso de Análise de Conjuntura usando o R os alunos aprendem a coletar, tratar, analisar e apresentar dados macroeconômicos usando o poder do R/RStudio e do Beamer/LaTeX. Saiba mais sobre esse curso inovador clicando no botão abaixo!

[/et_pb_text][et_pb_button admin_label="Botão" button_url="https://analisemacro.com.br/cursos-de-r/analise-de-conjuntura/" url_new_window="off" button_text="Ir para o Curso de Análise de Conjuntura" button_alignment="center" background_layout="dark" custom_button="off" button_letter_spacing="0" button_use_icon="default" button_icon_placement="right" button_on_hover="on" button_letter_spacing_hover="0"] [/et_pb_button][/et_pb_column][et_pb_column type="1_2"][et_pb_text admin_label="Texto" background_layout="dark" text_orientation="left" use_border_color="off" border_color="#ffffff" border_style="solid"]

Relatórios, apresentações e exercícios macroeconométricos usando extensivamente o R são feitos no âmbito do Clube do Código, o espaço de compartilhamento de códigos da Análise Macro. Ainda não conhece o Clube?! Saiba mais abaixo.

[/et_pb_text][et_pb_button admin_label="Botão" button_url="https://analisemacro.com.br/clube-do-codigo/" url_new_window="off" button_text="Ir para o Clube do Código" button_alignment="center" background_layout="dark" custom_button="off" button_letter_spacing="0" button_use_icon="default" button_icon_placement="right" button_on_hover="on" button_letter_spacing_hover="0"] [/et_pb_button][/et_pb_column][/et_pb_row][/et_pb_section]

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

O que é e como funcionam Sistemas Multi-Agentes

Sistemas multi-agentes (MAS) representam uma nova forma de estruturar aplicações de inteligência artificial, especialmente úteis para lidar com problemas complexos e distribuídos. Em vez de depender de um único agente generalista, esses sistemas são compostos por múltiplos agentes especializados que colaboram, competem ou se coordenam para executar tarefas específicas. Neste post, explicamos o que são os MAS, seus principais componentes (como LLMs, ferramentas e processos) e as arquiteturas mais comuns.

O que é um Vector Database e como criar um com LangChain

Nesta postagem, mostramos como construir um pipeline simples de RAG (Retrieval-Augmented Generation) usando o LangChain, o modelo Gemini 2.0 Flash e o Vector Database Chroma. Utilizamos como exemplo o Relatório de Inflação de junho de 2025 do Banco Central do Brasil. O fluxo envolve o download e leitura do PDF, divisão do texto com RecursiveCharacterTextSplitter, geração de embeddings com Gemini, armazenamento vetorial com Chroma e busca semântica para responder perguntas com base no conteúdo do relatório. É uma aplicação prática e didática para economistas que desejam integrar IA ao seu fluxo de análise.

Automatizando a Construção de Códigos em Python com LangGraph

Neste post, mostramos como construir um agente de código em Python utilizando LangGraph, LangChain e Gemini. A proposta é construir um protótipo para automatizar o ciclo completo de geração, execução e correção de código com o uso de LLMs, organizando o processo em um grafo de estados.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.