O lockdown é eficaz? Coletando evidências para o Brasil

Nesse post extra, iremos mostrar outra visualização dos dados de COVID-19 apresentados no Dicas de R de quarta-feira, e também fazer um breve estudo sobre o impacto do isolamento social (lockdown) sobre os casos de gripe que apresentam SRAG, dado que essa doença possui meios de transmissão semelhantes aos do coronavírus. Inicialmente, vamos mostrar como a análise de números de casos feita no post pode ser separada em estados:

dados_covid <- vroom::vroom("https://data.brasil.io/dataset/covid19/caso_full.csv.gz")

library(tidyverse)
library(RcppRoll)
library(ggplot2)
library(ggthemes)
escalas <- function(x) {
if (max(x) > 10000) {
seq(0, 12500, 2500)
} else if (max(x) > 8000) {
seq(0, 10000, 2000)
} else if (max(x) > 6000) {
seq(0, 8000, 1600)
} else if (max(x) > 4000){
seq(0, 5000, 1000)
} else if (max(x) > 3000){
seq(0, 3000, 600)
}
}

por_estado %>%
filter(state %in% ranking[1:9]) %>%
ggplot(aes(x=date, y=value)) + geom_line(size=1.05) +
scale_y_continuous("Número de casos novos", breaks = escalas) +
scale_x_date("", breaks = "3 month", minor_breaks = "1 month", date_labels = "%b %y") +
labs(title=('Evolução da COVID-19: estados com maior número de casos')) +
theme_bw() + facet_wrap(~state, scales = "free_y")

Devemos notar que os dados desagregados possuem algumas observações que parecem ser errôneas, porém decidimos mantê-las aqui. Abaixo, um dos gráficos gerados:

Agora, vamos analisar os dados de números de casos de SRAG causados por gripe comum, conforme disponível no repositório do InfoGripe. Devido ao impacto das medidas de isolamento sobre a economia, e também sobre as fontes de renda de pessoas sob insegurança econômica, o trade-off implícito do distanciamento tem sido muito debatido, surgindo argumentos de parte da população de que o distanciamento nem mesmo seria efetivo. Como não temos dados sobre o COVID-19 sem a existência de lockdown - que seja total, parcial ou mal-aplicado -, não temos dados de controle para testar o efeito do lockdown sobre a trajetória do número de casos da doença.

Por outro lado, existem doenças que, apesar de possuírem taxas de contaminação e mortalidade menores do que o COVID-19, compartilham de seus métodos de transmissão, logo podemos inferir que, em um regime de distanciamento cujo objetivo é diminuir a transmissão do COVID-19, a redução na transmissão de outras doenças que dependem do mesmo tipo de contato evidencia a efetividade do método.

No código abaixo, vamos visualizar o número de casos ano-a-ano de gripe que apresentam SRAG:

library(ggplot2)
library(tidyverse)

infogripe <- read.csv("https://gitlab.procc.fiocruz.br/mave/repo/-/raw/master/Dados/InfoGripe/serie_temporal_com_estimativas_recentes.csv", sep = ';')

gripe_limpo <- infogripe %>% filter(Tipo == "País" & escala == "casos") %>%
select(`Ano.epidemiológico`, `Semana.epidemiológica`, `dado`,
`Casos.semanais.reportados.atÃ..a.última.atualizaÃ.Ã.o`)

srag <- gripe_limpo %>% filter(dado=="sragflu") %>%
rename(casos = Casos.semanais.reportados.atÃ..a.última.atualizaÃ.Ã.o,
ano = Ano.epidemiológico,
semana = Semana.epidemiológica) %>%
mutate(date = ano + semana/52,
date = ifelse(ano == 2014 | ano == 2020, ano+semana/53, date),
casos = as.numeric(gsub(",", ".", casos)))

srag_podado <- srag %>% filter(semana &amp;lt;53) %>%
mutate(semana = ifelse(semana&amp;lt;10, paste(0, semana, sep = ""), semana),
semana = gsub(" ", "", paste(semana, "01")),
date = paste(ano, semana, sep = ""),
date = as.Date(date, "%Y%W%w"))

srag_usual <- srag_podado %>% filter(ano > 2009)

ggplot(srag_usual, aes(x=date, y = casos)) + geom_line() + facet_wrap(~ano, scales = "free") +
scale_x_date(date_labels = "%b") + 
labs(title = "Número de casos de SRAG causada por gripe por ano", ylab="Quantidade",
caption = "Fonte: Análise Macro com dados do INFOGIPE")+
theme(axis.title.x = element_blank())

Como podemos ver, a gripe apresenta alguma sazonalidade, e seus picos tendem a decair lentamente após o início da temporada de transmissão. É interessante notar que, no ano de 2020, há uma queda brusca no número de casos, resultado bem diferente dos anos anteriores. Além disso, o número de casos até agora em 2021 é relativamente baixo, que pode indicar uma continuação no efeito anômalo, mas também pode ser resultado de ainda não ter começado a temporada de gripe em 2021. Vamos então visualizar mais claramente os dados de 2020.

library(ggrepel)

srag_usual %>% filter(ano == 2020) %>%
ggplot(aes(x=date, y=casos))+geom_line() + 
geom_vline(xintercept = as.numeric(as.Date("2020-03-15")), linetype = 4)+
scale_x_date(breaks = "2 months", minor_breaks = "1 week", date_labels = "%b %Y")+
labs(title = "Número de casos de SRAG causada por gripe em 2020", ylab="Quantidade",
caption = "Fonte: Análise Macro com dados do INFOGIPE") +
geom_label_repel(data = filter(srag_usual, date == as.Date("2020-03-15")),
label = "Ínicio do isolamento",
box.padding = 2,
aes(x=as.Date("2020-03-15"), y= 250))+
theme(axis.title.x = element_blank())

 

A data referenciada como início do isolamento é metade de março, época onde a maior parte dos governos estaduais decretou lockdown. Como podemos ver, o número de casos de gripe com SRAG cai bruscamente cerca de 10 dias depois, que é próximo do tempo de incubação de sintomas desse tipo para a gripe. Com isso, a análise exploratória parece indicar evidências de que utilizar o distanciamento como variável binária para controlar os casos de SRAG pode ser válido.

Faremos então a modelagem de um modelo ARDL, que tem como variáveis explicativas o lag do número de casos e a existência (ou não) de distanciamento. Os detalhes estarão disponíveis para os membros do Clube AM. A regressão final é:

Dependent variable:
casos
lag(casos, 1) 1.424***
(0.039)
lag(casos, 2) -0.512***
(0.046)
lag(casos, 5) 0.170***
(0.046)
lag(casos, 6) -0.165***
(0.039)
lag(casos, 52) 0.015
(0.011)
lockdown -10.129**
(4.613)
Constant 5.511***
(1.705)
Observations 527
R2 0.941
Adjusted R2 0.940
Residual Std. Error 30.076 (df = 520)
F Statistic 1,370.252*** (df = 6; 520)
Note: *p<0.1; **p<0.05; ***p<0.01

Os resultados encontrados sugerem que a existência do lockdown é estatisticamente significante, com p-valor de 0.028. O sinal do seu parâmetro é -10, logo temos evidência de que o lockdown diminui a média de casos novos semanais em mais de 10. Apesar do lag sazonal ser estatisticamente insignificante, sua exclusão aumenta o AIC e diminui a log-likelihood, logo ele é mantido aqui.

Em suma, os resultados encontrados nesse exercício sugerem que a existência do distanciamento e de medidas restritivas implica em diminuição da transmissão da gripe, que é contagiada de forma semelhante ao COVID-19. Com isso, inferimos que o lockdown é sim uma boa medida para o controle de doenças do tipo.

__________________

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como usar IA + Python para a análise dados Macroeconômicos?

Imagine que você tenha uma tabela e precise gerar uma análise de dados rápida. Você poderia tentar parar tudo que está fazendo ou até mesmo fazer horas extras, mas dificilmente você entregaria mais rapidamente do que um modelo de Inteligência Artificial (IA). Neste artigo mostramos um exemplo de análise gerado por IA para análise do IBC-Br, usando a ferramenta Python para integrar a IA.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.