Março vermelho no país do negacionismo

É difícil encontrar adjetivo para caracterizar o momento atual que passa o país. A pandemia do Covid-19 atingiu o seu pior momento até aqui: março registrou quase 67 mil mortes pelo novo coronavírus. Nesse post, registramos a soma mensal de mortes provocada pela irresponsabilidade e pelo descaso, no Brasil e nos estados.

Membros do Clube AM, por suposto, têm acesso a todos os códigos desse exercício.

Os dados são coletados como abaixo.


## Carregar pacotes
library(tidyverse)
library(lubridate)

## Coletar dados
covid_df = readr::read_csv("https://raw.githubusercontent.com/wcota/covid19br/master/cases-brazil-states.csv")

A seguir, podemos construir o gráfico abaixo, destacando o mês de março.

Como se vê, o novo coronavírus foi responsável por quase 67 mil mortes somente em março, atingindo o pior momento até aqui. A situação nos estados, por suposto, pode ser vista a seguir.

Um março triste e desolador para todos nós, infelizmente.

Membros do Clube AM, por suposto, têm acesso a todos os códigos desse exercício.

____________________________

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Criando um Simples Assistente de Pesquisa com LangGraph

O exercício utiliza o LangGraph para criar personas fictícias de analistas econômicos, entrevistá-las com um especialista fictício e, a partir dessas interações, gerar relatórios técnicos usando LLMs, buscas na web e execução paralela.

Construindo Corrective RAG (CRAG) com LangGraph

Este post explica o conceito de Agentic CRAG (Corrective Retrieval-Augmented Generation) e sua aplicação na análise das atas do COPOM. Mostramos como combinar recuperação de informações, avaliação de relevância, correção de consultas e busca externa em um fluxo estruturado com LangGraph.

Criando Personas de Analistas com LangGraph

Este post apresenta um estudo de caso sobre a criação de um assistente de pesquisa com o LangGraph, integrando o conceito de human-in-the-loop. O sistema gera personas de analistas a partir de um tema, recebe feedback humano e ajusta as respostas de forma iterativa, garantindo resultados mais precisos e personalizados.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.