Modelando o spread bancário no Brasil

No próximo dia 15/12, darei uma aula ao vivo sobre como criar scripts de R que automatizam a coleta, o tratamento, a modelagem e a apresentação de dados. A aula faz parte do lançamento do Clube AM, um novo espaço aqui na Análise Macro para compartilhar os scripts de R que produzimos aqui no Blog e internamente na Análise Macro. Para se inscrever na aula, clique aqui. O projeto de compartilhamento de códigos da Análise Macro vai avançar para uma versão 2.0, que incluirá a existência de um grupo fechado no Whatsapp, de modo a reunir os membros do Novo Clube, compartilhando com eles todos os códigos dos nossos posts feitos aqui no Blog, exercícios de análise de dados de maior fôlego, bem como tirar dúvidas sobre todos os nossos projetos, exercícios e nossos Cursos e Formações.

Para ilustrar o que vamos compartilhar lá nesse novo ambiente, estou publicando nesse espaço alguns dos nossos exercícios de análise de dados. Esses exercícios fazem parte do repositório atual do Clube do Código, que deixará de existir. Além de todos os exercícios existentes no Clube do Código, vamos adicionar novos exercícios e códigos toda semana, mantendo os membros atualizados sobre o que há de mais avançado em análise de dados, econometria, machine learning, forecasting e R.

Hoje, vou mostrar os resultados de um modelo que fizemos no âmbito do Clube para explicar o spread bancário. Em termos gerais, chamamos de spread bancário a diferença entre as taxas de empréstimo para clientes e captação de recursos que os bancos fazem.

Como variáveis explicativas para o spread bancário, foram utilizadas as provisões dos bancos, compulsórios bancários, taxa de inadimplência, taxa básica de juros e taxa de desemprego. À exceção das provisões, todas as demais variáveis se mostraram estatisticamente significativas para explicar o spread.

A tabela abaixo resume os resultados encontrados.

Dependent variable:
spread
provisoes 0.869
(0.629)
compulsorio 0.015***
(0.004)
inadimplencia 1.443***
(0.472)
selic 0.500***
(0.038)
desemprego 0.528***
(0.141)
Constant -8.232***
(1.670)
Observations 103
R2 0.912
Adjusted R2 0.907
Residual Std. Error 0.868 (df = 97)
F Statistic 200.607*** (df = 5; 97)
Note: *p<0.1; **p<0.05; ***p<0.01

 

_______________________

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Regimes da Política Monetária Brasileira com Markov Switching no Python

Este exercício analisa a política monetária brasileira utilizando modelos de Markov Switching Regression. O objetivo é identificar diferentes regimes de política monetária e como eles influenciam a taxa Selic, a meta de inflação e o hiato do produto. Usamos a linguagem de programação Python para o processo de coleta, tratamento, análise e modelagem dos dados.

Como criar janelas móveis de séries temporais usando o Python

Janelas Móveis/Deslizantes, ou Rolling Windows, são termos frequentes na análise de séries temporais. Mas o que são e como aplicá-las no Python? Neste tutorial, mostramos como essa ferramenta é essencial para a análise de dados utilizando como exemplo a correlação móvel de ações brasileiras.

Como incorporar choques em cenários de previsão?

Neste exercício mostramos como incorar choques no cenário de variáveis exógenas para fins de previsão. Usando como exemplo a previsão do IPCA, através de um modelo de machine learning, mostramos os cuidados a serem tomados e uma forma simples de definir o cenário com os choques. Ao final, apresentamos uma previsão com um suposto choque e uma previsão sem o choque para comparação.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.