Em fevereiro, 626 mil pessoas ficaram desempregadas

[et_pb_section admin_label="section"][et_pb_row admin_label="row"][et_pb_column type="1_2"][et_pb_text admin_label="Texto" background_layout="light" text_orientation="left" use_border_color="off" border_color="#ffffff" border_style="solid" text_font="Verdana||||" text_font_size="16"]

O IBGE divulgou agora há pouco o resultado da Pesquisa Nacional por Amostra de Domicílios Contínua (PNAD Contínua) referente a fevereiro. Os números não são nada animadores. Na comparação com janeiro, o estoque de desempregados aumentou em 626 mil, chegando a 13,5 milhões de pessoas. Isso representa 13,2% da População Economicamente Ativa. Ao clicar na imagem ao lado, você tem acesso à apresentação completa. Membros do Clube do Código têm acesso aos arquivos que geraram a apresentação, como sempre. 

Conheça o Clube do Código aqui.

OBS: O Clube do Código não implica em serviço de consultoria econômica, sendo tão somente um projeto que ensina os seus membros a utilizar o e o RStudio para produzir relatórios e apresentações, bem como gerar exercícios macroeconométricos.

[/et_pb_text][/et_pb_column][et_pb_column type="1_2"][et_pb_image admin_label="Imagem" src="https://analisemacro.com.br/wp-content/uploads/2017/03/pnad.png" show_in_lightbox="off" url="https://github.com/analisemacro/degustacao/blob/master/clubedocodigo/pnadcm022017.pdf" url_new_window="on" use_overlay="off" animation="left" sticky="off" align="left" force_fullwidth="off" always_center_on_mobile="on" use_border_color="off" border_color="#ffffff" border_style="solid"] [/et_pb_image][/et_pb_column][/et_pb_row][et_pb_row admin_label="row" make_fullwidth="off" use_custom_width="off" width_unit="on" use_custom_gutter="off" padding_mobile="off" background_color="#083ca5" allow_player_pause="off" parallax="off" parallax_method="off" make_equal="off" parallax_1="off" parallax_method_1="off" column_padding_mobile="on"][et_pb_column type="4_4"][et_pb_text admin_label="Texto" background_layout="dark" text_orientation="center" use_border_color="off" border_color="#ffffff" border_style="solid"]

Tenha acesso completo aos códigos dessa apresentação assinando o Clube do Código, o projeto de compartilhamento de códigos da Análise Macro. Você aprende a produzir apresentações, relatórios e exercícios macroeconométricos usando todo o poder do R. E ainda ajuda a manter o Blog da AM ativo durante todo o ano! Clique abaixo e conheça o Clube!

[/et_pb_text][et_pb_button admin_label="Botão" button_url="https://analisemacro.com.br/clube-do-codigo/" url_new_window="off" button_text="Ir para o Clube do Código" button_alignment="center" background_layout="dark" custom_button="off" button_letter_spacing="0" button_use_icon="default" button_icon_placement="right" button_on_hover="on" button_letter_spacing_hover="0"] [/et_pb_button][/et_pb_column][/et_pb_row][/et_pb_section]

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

FED Speeches: Quantificando a Incerteza da Política Monetária com IA e Python

Os discursos dos membros do FED podem dar indicativos relevantes sobre a condução da política monetária, como a percepção de incerteza na fala e na escolha das palavras. Sendo assim, monitorar e interpretar não é suficiente, é necessário quantificar a incerteza nos discursos. Neste exercício mostramos o caminho para construir um indicador de incerteza da política monetária, usando métodos inovadores de IA com o Python.

Medindo o Hiato do Produto do Brasil usando Python

Uma medida extremamente importante para a avaliação econômica de um país é o Hiato do Produto. Neste post, realizamos uma comparação das diferentes formas de estimação dessa variável não observável utilizando o Python como ferramenta de análise de dados.

Como analisar a contribuição para a Volatilidade de uma carteira de ações usando Python

A contribuição para a volatilidade fornece uma decomposição ponderada da contribuição de cada elemento do portfólio para o desvio padrão de todo o portfólio. Em termos formais, é definida pelo nome de contribuição marginal, que é basicamente a derivada parcial do desvio padrão do portfólio em relação aos pesos dos ativos. A interpretação da fórmula da contribuição marginal, entretanto, não é tão intuitiva, portanto, é necessário obter medidas que possibilitem analisar os componentes. Veremos portanto como calcular os componentes da contribuição e a porcentagem da contribuição. Vamos criar as respectivas medidas usando a linguagem de programação Python.

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.