Em fevereiro, 626 mil pessoas ficaram desempregadas

[et_pb_section admin_label="section"][et_pb_row admin_label="row"][et_pb_column type="1_2"][et_pb_text admin_label="Texto" background_layout="light" text_orientation="left" use_border_color="off" border_color="#ffffff" border_style="solid" text_font="Verdana||||" text_font_size="16"]

O IBGE divulgou agora há pouco o resultado da Pesquisa Nacional por Amostra de Domicílios Contínua (PNAD Contínua) referente a fevereiro. Os números não são nada animadores. Na comparação com janeiro, o estoque de desempregados aumentou em 626 mil, chegando a 13,5 milhões de pessoas. Isso representa 13,2% da População Economicamente Ativa. Ao clicar na imagem ao lado, você tem acesso à apresentação completa. Membros do Clube do Código têm acesso aos arquivos que geraram a apresentação, como sempre. 

Conheça o Clube do Código aqui.

OBS: O Clube do Código não implica em serviço de consultoria econômica, sendo tão somente um projeto que ensina os seus membros a utilizar o e o RStudio para produzir relatórios e apresentações, bem como gerar exercícios macroeconométricos.

[/et_pb_text][/et_pb_column][et_pb_column type="1_2"][et_pb_image admin_label="Imagem" src="https://analisemacro.com.br/wp-content/uploads/2017/03/pnad.png" show_in_lightbox="off" url="https://github.com/analisemacro/degustacao/blob/master/clubedocodigo/pnadcm022017.pdf" url_new_window="on" use_overlay="off" animation="left" sticky="off" align="left" force_fullwidth="off" always_center_on_mobile="on" use_border_color="off" border_color="#ffffff" border_style="solid"] [/et_pb_image][/et_pb_column][/et_pb_row][et_pb_row admin_label="row" make_fullwidth="off" use_custom_width="off" width_unit="on" use_custom_gutter="off" padding_mobile="off" background_color="#083ca5" allow_player_pause="off" parallax="off" parallax_method="off" make_equal="off" parallax_1="off" parallax_method_1="off" column_padding_mobile="on"][et_pb_column type="4_4"][et_pb_text admin_label="Texto" background_layout="dark" text_orientation="center" use_border_color="off" border_color="#ffffff" border_style="solid"]

Tenha acesso completo aos códigos dessa apresentação assinando o Clube do Código, o projeto de compartilhamento de códigos da Análise Macro. Você aprende a produzir apresentações, relatórios e exercícios macroeconométricos usando todo o poder do R. E ainda ajuda a manter o Blog da AM ativo durante todo o ano! Clique abaixo e conheça o Clube!

[/et_pb_text][et_pb_button admin_label="Botão" button_url="https://analisemacro.com.br/clube-do-codigo/" url_new_window="off" button_text="Ir para o Clube do Código" button_alignment="center" background_layout="dark" custom_button="off" button_letter_spacing="0" button_use_icon="default" button_icon_placement="right" button_on_hover="on" button_letter_spacing_hover="0"] [/et_pb_button][/et_pb_column][/et_pb_row][/et_pb_section]

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como preparar os dados para um modelo preditivo?

Modelos de previsão macroeconômica podem facilmente alcançar um número elevado de variáveis. Mesmo modelos simplificados, como o Modelo de Pequeno Porte (MPP) do Banco Central, usam cerca de 30 variáveis. Isso impõe um grande desafio ao nosso dia a dia: como fazer a gestão destes dados para uso em modelos, desde a coleta até o tratamento?

Transfer Learning para Previsão de Séries Temporais com o Python

A aprendizagem por transferência (ou transfer learning) é a técnica de reutilizar um modelo previamente treinado em um novo problema. Esse conceito representa um grande avanço para a previsão de variáveis, especialmente aquelas organizadas ao longo do tempo, como séries temporais. Neste post, exploramos como usar transfer learning com Python para trabalhar com esse tipo de dado.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.