Policiais mortos vs. mortes por policiais no Rio de Janeiro

No mês de dezembro, iremos lançar uma nova versão do Clube do Código, que se chamará Clube AM. O projeto de compartilhamento de códigos da Análise Macro vai avançar para uma versão 2.0, que incluirá a existência de um grupo fechado no Whatsapp, de modo a reunir os membros do Novo Clube, compartilhando com eles todos os códigos dos nossos posts feitos aqui no Blog, exercícios de análise de dados de maior fôlego, bem como tirar dúvidas sobre todos os nossos projetos, exercícios e nossos Cursos e Formações.

Para ilustrar o que vamos compartilhar lá nesse novo ambiente, estou publicando nesse espaço alguns dos nossos exercícios de análise de dados. Esses exercícios fazem parte do repositório atual do Clube do Código, que deixará de existir. Além de todos os exercícios existentes no Clube do Código, vamos adicionar novos exercícios e códigos toda semana, mantendo os membros atualizados sobre o que há de mais avançado em análise de dados, econometria, machine learning, forecasting e R.

Hoje, dando sequência a análise da base de dados do Instituto de Segurança Pública (ISP) que comecei no post anterior, fiquei curioso para ver a relação entre duas séries: a de homicídios por intervenção policial e a de policiais militares mortos em serviço.

Como de praxe, o script começa com os pacotes que vamos utilizar.


library(readr)
library(forecast)
library(ggplot2)
library(scales)
library(vars)
library(aod)

A partir disso, nós importamos e tratamos os dados disponíveis no site do ISP.


data = read_csv2('DOMensalEstadoDesde1991.csv')

data = ts(data, start=c(1991,01), freq=12)
hip = window(data[,6], start=c(1998,01))
pmms = window(data[,50], start=c(2003,01))

subdata = ts.intersect(hip, pmms)

Um gráfico das séries que vamos utilizar é colocado abaixo.

Há uma leve correlação positiva entre as séries. De forma a investigar uma relação de causalidade no sentido de Granger, apliquei o procedimento proposto por Toda e Yamamoto (1995) às mesmas. Os resultados encontrados sugerem que existe uma causalidade no sentido de policiais militares mortos em serviços para homicídios por intervenção policial, considerando o nível de 5% de significância. Em outras palavras, policiais mortos em serviços tem precedência temporal sobre o número de homicídios por intervenção policial.

______________

Toda H.Y.; Yamamoto T. (1995). Statistical inference in vector autoregressions with possibly integrated processes. Journal of Econometrics, 66, 225–250. 

(*) Cadastre-se aqui na nossa Lista VIP para receber um super desconto na abertura das Turmas 2021.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como tratar dados no Python? Parte 4: operações por grupos

Como mensalizar dados diários? Ou como filtrar os valores máximos para diversas categorias em uma tabela de dados usando Python? Estas perguntas são respondidas com os métodos de operações por grupos. Neste tutorial mostramos estes métodos disponíveis na biblioteca pandas, que tem como vantagem sua sintaxe simples e prática.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.