Uma proxy para o juro neutro

No Relatório Trimestral de Inflação de dezembro, divulgado na quinta-feira passada, o pessoal do Banco Central apresentou uma proxy para a taxa neutra de juros considerando as taxas de inflação e de juros três anos à frente disponibilizadas na pesquisa Focus. A despeito da simplicidade do exercício, existe um trabalho de coleta e tratamento dos dados da pesquisa Focus para se chegar ao juro real três anos à frente, considerado como proxy para o juro neutro da economia. Isso dito, para mostrar como as coisas ficam mais fáceis com o R, eu resolvi replicar o exercício do Banco Central no Clube do Código. Segue um resumo da Edição 70 do Clube.

Para coletar os dados da inflação e da taxa Selic esperadas, diretamente do sistema de expectativas do Banco Central, utilizei o pacote rbcb, disponível no github. De posse dos dados, filtrei apenas as expectativas três anos à frente para as duas variáveis, em três categorias: mediana, mínimo e máximo. Uma vez colhidos os dados filtrados, construí o juro neutro mediano, mínimo e máximo, considerando os dados diários. Por fim, calculei a média mensal do juro neutro, do juro neutro mínimo e máximo.

O gráfico acima ilustra. Na ponta, o juro neutro está em 2,9%, enquanto o mínimo ficou em 1.2% e o máximo em 3.7%. Há, por suposto, uma queda na taxa nos últimos anos, considerando assim a amostra das instituições que participam do boletim Focus.

Todos os códigos do exercício estão disponíveis no repositório privado do Clube do Código no github. Para ter acesso, basta ser membro do Clube ou ser aluno do plano premium dos nossos Cursos Aplicados de R.

_________________________

(*) Confira nossa super promoção de Natal com até 50% de desconto nos nossos Combos aqui.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Criando operações SQL com IA Generativa no R com querychat

No universo da análise de dados, a velocidade para obter respostas é um diferencial competitivo. Frequentemente, uma simples pergunta de negócio — “Qual foi nosso produto mais vendido no último trimestre na região Nordeste?” — inicia um processo que envolve abrir o RStudio, escrever código dplyr ou SQL, executar e, finalmente, obter a resposta. E se pudéssemos simplesmente perguntar isso aos nossos dados em português, diretamente no nosso dashboard Shiny?

Dashboard Financeiro com IA e Shiny Python: Análise de Dados Abertos da CVM

Este artigo apresenta um tutorial completo sobre como construir uma ferramenta de análise financeira de ponta. Utilizando Shiny for Python, demonstramos a automação da coleta de dados das Demonstrações Financeiras Padronizadas (DFP) da CVM e o tratamento dessas informações com Pandas. O ponto alto do projeto é a integração da IA Generativa do Google Gemini, que atua como um assistente de análise, interpretando os dados filtrados pelo usuário e fornecendo insights contábeis e financeiros em tempo real. O resultado é um dashboard dinâmico que democratiza a análise de dados complexos e acelera a tomada de decisão.

Econometria, ML ou IA para previsão da PMS?

Prever a Pesquisa Mensal de Serviços (PMS/IBGE) é um desafio por natureza: trata-se de uma série mensal, sujeita a volatilidade e choques que vão de fatores sazonais a mudanças estruturais no setor. Para enfrentar esse problema, realizamos um exercício de comparação entre três abordagens de modelagem: econometria tradicional (ARIMA), machine learning (XGBoost) e inteligência artificial (TimeGPT).

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.