Acessando dados do Bolsa Família no R

O Bolsa Família (PBF) é um programa de transferência de renda condicional criado em 2003, amplamente investigado na literatura e com significativos impactos em redução de pobreza, escolarização, distribuição de renda, entre outros. Para avaliar estes impactos os analistas, assistentes e pesquisadores utilizam os microdados do PBF através de linguagens de programação. Neste exercício mostramos como fazer isso utilizando o R.

Para reproduzir o exercício a seguir você precisará dos seguintes pacotes:


library(data.table) # CRAN v1.14.0
library(janitor) # CRAN v2.1.0
library(downloader) # CRAN v0.4
library(dplyr) # CRAN v1.0.7

Há uma grande variedade de dados relacionados ao PBF. Neste exemplo, iremos explorar a tabela referente aos valores de parcela pagos aos beneficiários do programa, disponível no Portal da Transparência.

Os dados são armazenados em arquivos CSV compactados em formato ZIP, havendo um arquivo para cada mês/ano. Sendo assim, precisamos baixar o arquivo compactado, descompactá-lo e, por fim, importar o CSV para o R. Para facilitar todo este procedimento, criei uma função e deixei disponível no GitHub. O comando abaixo importa a função para ser usada no R:


# Importar do GitHub função para acesso aos dados do PBF (Pagamentos)
downloader::source_url(
url = paste0(
"https://gist.githubusercontent.com/schoulten/",
"37fc426ef1ceefcaa96f8e232d1380c7/raw/",
"34665e0354caeb3ff65e1bbaf0a384f97112a5bd/",
"import_pbf_pagmt.R"
),
sha = "7e9f3d3d3961d762f5c3e8d06b3ceacc1911dd06"
)

Com a função no environment, passamos um valor de ano (4 dígitos) e mês (2 dígitos) de referência para importar em formato tabular (data.table1) os dados do Bolsa Família (Pagamentos), por exemplo:


# Importar dados (setembro/2021)
tbl_pbf <- import_pbf_pagmt("2021", "09")

dplyr::glimpse(tbl_pbf) # classe data.table
# Rows: 14,655,291
# Columns: 9
# $ mes_referencia <int> 202109, 202109, 202109, 202109, 202109, 202109,~
# $ mes_competencia <int> 202104, 202104, 202104, 202104, 202104, 202104,~
# $ uf <chr> "BA", "ES", "MG", "PI", "RJ", "RS", "BA", "MG",~
# $ codigo_municipio_siafi <int> 3843, 5675, 604, 995, 5839, 996, 3709, 4085, 60~
# $ nome_municipio <chr> "RODELAS", "MUQUI", "DIVISA ALEGRE", "COIVARAS"~
# $ cpf_favorecido <chr> "***.015.315-**", "***.196.477-**", "***.538.95~
# $ nis_favorecido <int64> 1.004631e-313, 6.246777e-314, 6.262453e-314, ~
# $ nome_favorecido <chr> "MARIA EDILENE TELES FONSECA", "KARLA CRISTINA ~
# $ valor_parcela <dbl> 347, 446, 260, 624, 617, 194, 179, 178, 260, 89~

Com apenas um comando já temos um objeto com mais de 14 milhões de observações e 9 colunas pronto para análise. Consulte o dicionário das variáveis no Portal da Transparência para mais informações. Por exemplo, se você quiser saber o valor médio das parcelas pagas e o total de beneficiários do programa:


# Benefício médio
mean(tbl_pbf$valor_parcela, na.rm = TRUE)

# [1] 186.2093

# Número de beneficiários
length(unique(tbl_pbf$nis_favorecido))

# [1] 14655264

Similarmente podemos calcular o total (R$) em benefício repassado por estado, por exemplo:


# Valor total repassado por estado (UF)
total_uf <- tbl_pbf[, list(valor_total = sum(valor_parcela, na.rm = TRUE)), by = uf]
total_uf

# uf valor_total
# 1: BA 346035656
# 2: ES 35626017
# 3: MG 204132719
# 4: PI 96132581
# 5: RJ 179625855
# 6: RS 68639427
# 7: PE 217531126
# 8: MA 203221226
# 9: SC 24529618
# 10: AC 24380365
# 11: AL 79785460
# 12: AM 91468908
# 13: AP 17164547
# 14: CE 205489817
# 15: DF 16230798
# 16: GO 49255645
# 17: MS 23925140
# 18: MT 27931366
# 19: PA 190517764
# 20: PB 105063462
# 21: PR 66837885
# 22: RN 68870535
# 23: RO 12405405
# 24: RR 10942825
# 25: SE 48599648
# 26: SP 292074874
# 27: TO 22533216
# uf valor_total

Ou ainda fazer análises um pouco mais elaboradas/informativas, como essa:

Saiba mais

As possibilidades de análise que os dados oferecem são diversas, saiba mais nos cursos da Análise Macro.


[1] Classe de objeto mais recomendada para lidar com arquivos grandes (neste exemplo, 14+ milhões de linhas).

 

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como choques inflacionários afetam a previsão da Selic?

Como mensurar a importância de choques na inflação sobre o erro de previsão da taxa de juros? Neste exercício quantificamos esta pergunta sob a ótica de um modelo VAR, usando dados recentes da macroeconomia brasileira. Especificamente, estimamos a decomposição da variância dos erros de previsão do modelo, analisando choques na inflação da gasolina e sua importância sobre a variância dos erros de previsão da taxa Selic.

Modelo de previsão para o preço da gasolina

Neste exercício exploramos os dados públicos sobre o preço da gasolina no Brasil, sua composição, evolução temporal, políticas associadas e, por fim, construímos um modelo simples de previsão. Com um modelo em mãos, o analista pode cenarizar o comportamento futuro da série da forma como preferir. Todos os procedimentos foram feitos usando a linguagem de programação Python.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.