Análise de impacto fiscal sobre o dolár com Python

A situação fiscal brasileira vem, frequentemente, sendo um ponto de preocupação por agentes de mercado. Recentemente, o governo vigente anunciou um “pacote fiscal” que visa economizar R$ 70 bilhões em dois anos. O anúncio foi recebido pelo mercado com desconfiança, o que levou a taxa de câmbio a acelerar rapidamente.

Para estimar o impacto causal deste anúncio é possível usar um modelo Bayesiano para estimar um contrafactual da taxa de câmbio, ou seja, qual seria a trajetória do dolár no caso de ausência da intervenção. Aqui usamos uma cesta de 12 moedas para construir uma taxa de câmbio, em R$/US$, contrafactual. Usamos o pacote tfcausalimpact para a modelagem no Python.

O modelo capta uma depreciação de quase 5% no dolár após o anúncio do pacote fiscal no final de novembro. No caso de ausência do anúncio, a taxa de câmbio deveria estar sendo cotada em torno de R$ 5,78 (contra os atuais R$ 6,15).

Como em todas as abordagens de inferência causal, conclusões válidas requerem premissas fortes. Neste caso, assumimos que o dólar BRLUSD é explicado por uma cesta de moedas que por si próprias não foram afetadas pela intervenção (anúncio de pacote fiscal).

Conclusão

Usamos uma cesta de 12 moedas para construir um cenário contrafactual da taxa de câmbio após o último anúncio de pacote fiscal, com base em modelagem Bayesiana. No período, o dolár depreciou quase 5% e passou os R$ 6,15, enquanto que na ausência da intervenção a moeda deveria estar cotada em R$ 5,78.

Tenha acesso ao código e suporte desse e de mais 500 exercícios no Clube AM!

Quer o código desse e de mais de 500 exercícios de análise de dados com ideias validadas por nossos especialistas em problemas reais de análise de dados do seu dia a dia? Além de acesso a vídeos, materiais extras e todo o suporte necessário para você reproduzir esses exercícios? Então, conheça o Clube AM clicando aqui.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Qual o hiato do produto no Brasil?

Entender o hiato do produto é fundamental para avaliar o ritmo da economia e as pressões inflacionárias no Brasil. Neste artigo, mostramos como estimar essa variável não observável a partir dos dados do PIB, explorando diferentes metodologias — de regressões simples a modelos estruturais — e discutindo as limitações e incertezas que cercam cada abordagem.

Determinantes do Preço do Ouro: VAR + Linguagem R

Este artigo realiza uma análise econométrica para investigar os determinantes dinâmicos do preço do ouro. Utilizando um modelo Vetorial Autorregressivo (VAR) em R, examinamos o impacto de variáveis como o dólar (DXY), a curva de juros e a incerteza global. Os resultados mostram que um fortalecimento inesperado do dólar tem um efeito negativo e significativo no curto prazo sobre os retornos do ouro, embora a maior parte de sua variância seja explicada por fatores intrínsecos ao seu próprio mercado.

Existe correlação entre vagas de emprego e o S&P 500?

O que explica a divergência entre S&P 500 e vagas de emprego? Seria o impacto da IA ou a política monetária? Utilizando um análise dados e modelo VAR e testes de causalidade de Granger usando a linguagem de programação R, investigamos a relação e o motivo por trás da "boca de jacaré".

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.