Análise regional da atividade econômica com dados do BCB usando Python

O Banco Central disponibiliza indicadores regionais sobre a atividade econômica, possibilitando análises a nível de regiões e estados brasileiros. Neste artigo mostramos como acessar, processar e analisar estes dados utilizando o Python.

Aprenda a coletar, processar e analisar dados na formação de Do Zero à Análise de Dados Econômicos e Financeiros com Python.

Passo 01: buscando dados no portal do Banco Central

  1. Acesse o site https://www3.bcb.gov.br/sgspub/
  2. Clique em “Economia Regional
  3. Escolha um região e um estado e selecione “Setor real”
  4. Escolha o indicador de atividade econômica de interesse e copie o código (ex: código “25404” para o indicador “IBCR-RS - com ajuste sazonal (2002=100)”)

Passo 02: coleta, tratamento e análise de dados no Python

Para obter o código e o tutorial deste exercício faça parte do Clube AM e receba toda semana os códigos em R/Python, vídeos, tutoriais e suporte completo para dúvidas.

  1. Abrir o Python (ex: acesse o Google Colab pelo endereço https://www.colab.new/)
  2. Importe as bibliotecas pandas e plotnine
  3. Utilize a API do Banco Central para construir o link de coleta de dados (ex: “https://api.bcb.gov.br/dados/serie/bcdata.sgs.25404/dados?formato=json”)
  4. Colete os dados usando o link de API no pandas
  5. Aplique os tratamentos necessários utilizando a biblioteca pandas
  6. data valor
    0 2003-01-01 101.22
    1 2003-02-01 106.74
    2 2003-03-01 107.85
    3 2003-04-01 107.87
    4 2003-05-01 101.72
  7. Produza sua análise de dados visualmente utilizando a biblioteca plotnine

No exemplo abaixo produzimos um gráfico do indicador de atividade econômica regional do Banco Central para o nível estadual:

Nota: a API do Banco Central é bastante instável, portanto erros podem acontecer e costumam ser resolvidos com retentativas.

Conclusão

O Banco Central disponibiliza indicadores regionais sobre a atividade econômica, possibilitando análises a nível de regiões e estados brasileiros. Neste artigo mostramos como acessar, processar e analisar estes dados utilizando o Python.

Quer aprender mais?

Clique aqui para fazer seu cadastro no Boletim AM e baixar o código que produziu este exercício, além de receber novos exercícios com exemplos reais de análise de dados envolvendo as áreas de Data Science, Econometria, Machine Learning, Macroeconomia Aplicada, Finanças Quantitativas e Políticas Públicas diretamente em seu e-mail.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Estamos em pleno emprego no mercado de trabalho?

Este artigo investiga se o mercado de trabalho brasileiro atingiu o nível de pleno emprego, utilizando uma estimativa da NAIRU (Non-Accelerating Inflation Rate of Unemployment) baseada na metodologia de Ball e Mankiw (1997). Através de uma modelagem em Python que unifica dados históricos da PME e PNAD Contínua com as expectativas do Boletim Focus, comparamos a taxa de desocupação corrente com a taxa neutra estrutural. A análise visual e quantitativa sugere o fechamento do hiato de desemprego, sinalizando potenciais pressões inflacionárias. O texto detalha o tratamento de dados, a aplicação do Filtro Hodrick-Prescott e discute as vantagens e limitações da metodologia econométrica adotada.

Como se comportou a Taxa de Participação no Brasil nos últimos anos? Uma Análise com a Linguagem R

O objetivo deste estudo é analisar a evolução da Taxa de Participação no Brasil, contrastando-a com a Taxa de Desocupação e decompondo suas variações para entender os vetores (populacionais e de força de trabalho) que influenciam o comportamento atual do mercado de trabalho. Para isso, utilizamos a linguagem R em todo o processo, desde a coleta e o tratamento das informações até a visualização dos resultados, empregando os principais pacotes disponíveis no ecossistema da linguagem.

Como se comportou a inflação de serviços no Brasil nos últimos anos?

Uma análise econométrica da inflação de serviços no Brasil comparando os cenários de 2014 e 2025. Utilizando uma Curva de Phillips própria e estimativas da NAIRU via filtro HP, investigamos se o atual desemprego nas mínimas históricas repete os riscos do passado. Entenda como as expectativas de inflação e o hiato do desemprego explicam o comportamento mais benigno dos preços atuais em relação à década anterior.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.