Análise regional da atividade econômica com dados do BCB usando Python

O Banco Central disponibiliza indicadores regionais sobre a atividade econômica, possibilitando análises a nível de regiões e estados brasileiros. Neste artigo mostramos como acessar, processar e analisar estes dados utilizando o Python.

Aprenda a coletar, processar e analisar dados na formação de Do Zero à Análise de Dados Econômicos e Financeiros com Python.

Passo 01: buscando dados no portal do Banco Central

  1. Acesse o site https://www3.bcb.gov.br/sgspub/
  2. Clique em “Economia Regional
  3. Escolha um região e um estado e selecione “Setor real”
  4. Escolha o indicador de atividade econômica de interesse e copie o código (ex: código “25404” para o indicador “IBCR-RS - com ajuste sazonal (2002=100)”)

Passo 02: coleta, tratamento e análise de dados no Python

Para obter o código e o tutorial deste exercício faça parte do Clube AM e receba toda semana os códigos em R/Python, vídeos, tutoriais e suporte completo para dúvidas.

  1. Abrir o Python (ex: acesse o Google Colab pelo endereço https://www.colab.new/)
  2. Importe as bibliotecas pandas e plotnine
  3. Utilize a API do Banco Central para construir o link de coleta de dados (ex: “https://api.bcb.gov.br/dados/serie/bcdata.sgs.25404/dados?formato=json”)
  4. Colete os dados usando o link de API no pandas
  5. Aplique os tratamentos necessários utilizando a biblioteca pandas
  6. data valor
    0 2003-01-01 101.22
    1 2003-02-01 106.74
    2 2003-03-01 107.85
    3 2003-04-01 107.87
    4 2003-05-01 101.72
  7. Produza sua análise de dados visualmente utilizando a biblioteca plotnine

No exemplo abaixo produzimos um gráfico do indicador de atividade econômica regional do Banco Central para o nível estadual:

Nota: a API do Banco Central é bastante instável, portanto erros podem acontecer e costumam ser resolvidos com retentativas.

Conclusão

O Banco Central disponibiliza indicadores regionais sobre a atividade econômica, possibilitando análises a nível de regiões e estados brasileiros. Neste artigo mostramos como acessar, processar e analisar estes dados utilizando o Python.

Quer aprender mais?

Clique aqui para fazer seu cadastro no Boletim AM e baixar o código que produziu este exercício, além de receber novos exercícios com exemplos reais de análise de dados envolvendo as áreas de Data Science, Econometria, Machine Learning, Macroeconomia Aplicada, Finanças Quantitativas e Políticas Públicas diretamente em seu e-mail.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Criando operações SQL com IA Generativa no R com querychat

No universo da análise de dados, a velocidade para obter respostas é um diferencial competitivo. Frequentemente, uma simples pergunta de negócio — “Qual foi nosso produto mais vendido no último trimestre na região Nordeste?” — inicia um processo que envolve abrir o RStudio, escrever código dplyr ou SQL, executar e, finalmente, obter a resposta. E se pudéssemos simplesmente perguntar isso aos nossos dados em português, diretamente no nosso dashboard Shiny?

Dashboard Financeiro com IA e Shiny Python: Análise de Dados Abertos da CVM

Este artigo apresenta um tutorial completo sobre como construir uma ferramenta de análise financeira de ponta. Utilizando Shiny for Python, demonstramos a automação da coleta de dados das Demonstrações Financeiras Padronizadas (DFP) da CVM e o tratamento dessas informações com Pandas. O ponto alto do projeto é a integração da IA Generativa do Google Gemini, que atua como um assistente de análise, interpretando os dados filtrados pelo usuário e fornecendo insights contábeis e financeiros em tempo real. O resultado é um dashboard dinâmico que democratiza a análise de dados complexos e acelera a tomada de decisão.

Econometria, ML ou IA para previsão da PMS?

Prever a Pesquisa Mensal de Serviços (PMS/IBGE) é um desafio por natureza: trata-se de uma série mensal, sujeita a volatilidade e choques que vão de fatores sazonais a mudanças estruturais no setor. Para enfrentar esse problema, realizamos um exercício de comparação entre três abordagens de modelagem: econometria tradicional (ARIMA), machine learning (XGBoost) e inteligência artificial (TimeGPT).

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.