Coletando dados de Setores Censitários do Censo 2022 no Python

Dados sobre a demografia e o território são primordiais para definir e implementar políticas públicas, áreas de atuação comercial e/ou estratégias de marketing. Sendo assim, saber usar os dados do Censo 2022 pode trazer vantagens competitivas. Neste exercício mostramos como obter os dados da Malha de Setores Censitários no formato vetorial (GeoJson) usando o Python.

Fonte de dados

Os dados da Malha de Setores Censitários estão disponíveis na página do IBGE:

https://www.ibge.gov.br/estatisticas/sociais/saude/22827-censo-demografico-2022.html?edicao=39499&t=resultados

Coleta de dados

Para coletar os dados, abrimos o Google Colab e importamos a biblioteca geopandas. Em seguida, usamos o comando wget de terminal para baixar um dos arquivos da Malha (escolhemos o estado de Santa Catarina como exemplo). Com o arquivo baixado no Colab, basta descompactar com o comando unzip de terminal. Por fim, usamos a função read_file() do geopandas para importar os dados em um formato tabular:

Visualização de dados

Os dados já possuem, dentre outras, informações sobre a população e domicílios por setor censitário. Aqui geramos um gráfico com todos os dados para a capital do estado:

Conclusão

Dados sobre a demografia e o território são primordiais para definir e implementar políticas públicas, áreas de atuação comercial e/ou estratégias de marketing. Sendo assim, saber usar os dados do Censo 2022 pode trazer vantagens competitivas. Neste exercício mostramos como obter os dados da Malha de Setores Censitários no formato vetorial (GeoJson) usando o Python.

Tenha acesso ao código e suporte desse e de mais 500 exercícios no Clube AM!

Quer o código desse e de mais de 500 exercícios de análise de dados com ideias validadas por nossos especialistas em problemas reais de análise de dados do seu dia a dia? Além de acesso a vídeos, materiais extras e todo o suporte necessário para você reproduzir esses exercícios? Então, conheça o Clube AM clicando aqui.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

O que é um Vector Database e como criar um com LangChain

Nesta postagem, mostramos como construir um pipeline simples de RAG (Retrieval-Augmented Generation) usando o LangChain, o modelo Gemini 2.0 Flash e o Vector Database Chroma. Utilizamos como exemplo o Relatório de Inflação de junho de 2025 do Banco Central do Brasil. O fluxo envolve o download e leitura do PDF, divisão do texto com RecursiveCharacterTextSplitter, geração de embeddings com Gemini, armazenamento vetorial com Chroma e busca semântica para responder perguntas com base no conteúdo do relatório. É uma aplicação prática e didática para economistas que desejam integrar IA ao seu fluxo de análise.

Automatizando a Construção de Códigos em Python com LangGraph

Neste post, mostramos como construir um agente de código em Python utilizando LangGraph, LangChain e Gemini. A proposta é construir um protótipo para automatizar o ciclo completo de geração, execução e correção de código com o uso de LLMs, organizando o processo em um grafo de estados.

Análise de Dados com REPL Tool e LLM usando LangGraph

Neste post, vamos mostrar como você pode criar um agente que interpreta e executa código Python em tempo real, utilizando o REPL-Tool e um LLM da família Gemini. Começamos com um exemplo genérico e, em seguida, aplicamos a mesma estrutura à análise econômica de uma série histórica do IPCA.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.