Coletando dados regionais do CAGED no Python

Os dados regionais do CAGED permitem analisar o mercado de trabalho de forma detalhada, em termos de setores, educação, rendimento e características pessoais dos trabalhadores brasileiros. Neste exercício mostramos como acessar estas informações online via Python.

Importante: no momento atual, o acesso aos dados do CAGED só é permitido para conexões de internet do Brasil. Dessa forma, aplicativos como Google Colab não funcionarão.

Passo 01: acessar o FTP do CAGED

Abra o navegador de internet ou app compatível com navegação FTP e acesse o link: ftp://ftp.mtps.gov.br/pdet/microdados/NOVO%20CAGED/

Em seguida, navegue até o arquivo desejado. Exemplo para o CAGED de setembro/2024: ftp://ftp.mtps.gov.br/pdet/microdados/NOVO%20CAGED/2024/202409/CAGEDMOV202409.7z

Passo 02: baixar o arquivo

Agora abra o um Jupyter Notebook no VS Code e baixe o arquivo com o comando curl.

Para obter o código e o tutorial deste exercício faça parte do Clube AM e receba toda semana os códigos em R/Python, vídeos, tutoriais e suporte completo para dúvidas.

Passo 03: importar arquivo

Agora utilize um programa de descompactação, como o 7-Zip, do arquivo zipado para extrair o arquivo do CAGED e, então, importe a tabela de dados usando o pandas:

   competênciamov  região  ...  unidadesaláriocódigo  valorsaláriofixo
0          202409       4  ...                     5           1857.82
1          202409       4  ...                     1              9.33
2          202409       3  ...                     5           1694.00
3          202409       3  ...                     5              0.00
4          202409       5  ...                     5            663.39

[5 rows x 28 columns]

Passo 04: tratamento/análise de dados

Por fim, basta realizar os processamentos e análises regionais desejadas. Aqui calculamos o número de vagas geradas no estado de Santa Catarina:

13074

Conclusão

Os dados regionais do CAGED permitem analisar o mercado de trabalho de forma detalhada, em termos de setores, educação, rendimento e características pessoais dos trabalhadores brasileiros. Neste exercício mostramos como acessar estas informações online via Python.

Tenha acesso ao código e suporte desse e de mais 500 exercícios no Clube AM!

Quer o código desse e de mais de 500 exercícios de análise de dados com ideias validadas por nossos especialistas em problemas reais de análise de dados do seu dia a dia? Além de acesso a vídeos, materiais extras e todo o suporte necessário para você reproduzir esses exercícios? Então, conheça o Clube AM clicando aqui.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como choques inflacionários afetam a previsão da Selic?

Como mensurar a importância de choques na inflação sobre o erro de previsão da taxa de juros? Neste exercício quantificamos esta pergunta sob a ótica de um modelo VAR, usando dados recentes da macroeconomia brasileira. Especificamente, estimamos a decomposição da variância dos erros de previsão do modelo, analisando choques na inflação da gasolina e sua importância sobre a variância dos erros de previsão da taxa Selic.

Modelo de previsão para o preço da gasolina

Neste exercício exploramos os dados públicos sobre o preço da gasolina no Brasil, sua composição, evolução temporal, políticas associadas e, por fim, construímos um modelo simples de previsão. Com um modelo em mãos, o analista pode cenarizar o comportamento futuro da série da forma como preferir. Todos os procedimentos foram feitos usando a linguagem de programação Python.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.