Coletando dados regionais do CAGED no Python

Os dados regionais do CAGED permitem analisar o mercado de trabalho de forma detalhada, em termos de setores, educação, rendimento e características pessoais dos trabalhadores brasileiros. Neste exercício mostramos como acessar estas informações online via Python.

Importante: no momento atual, o acesso aos dados do CAGED só é permitido para conexões de internet do Brasil. Dessa forma, aplicativos como Google Colab não funcionarão.

Passo 01: acessar o FTP do CAGED

Abra o navegador de internet ou app compatível com navegação FTP e acesse o link: ftp://ftp.mtps.gov.br/pdet/microdados/NOVO%20CAGED/

Em seguida, navegue até o arquivo desejado. Exemplo para o CAGED de setembro/2024: ftp://ftp.mtps.gov.br/pdet/microdados/NOVO%20CAGED/2024/202409/CAGEDMOV202409.7z

Passo 02: baixar o arquivo

Agora abra o um Jupyter Notebook no VS Code e baixe o arquivo com o comando curl.

Para obter o código e o tutorial deste exercício faça parte do Clube AM e receba toda semana os códigos em R/Python, vídeos, tutoriais e suporte completo para dúvidas.

Passo 03: importar arquivo

Agora utilize um programa de descompactação, como o 7-Zip, do arquivo zipado para extrair o arquivo do CAGED e, então, importe a tabela de dados usando o pandas:

   competênciamov  região  ...  unidadesaláriocódigo  valorsaláriofixo
0          202409       4  ...                     5           1857.82
1          202409       4  ...                     1              9.33
2          202409       3  ...                     5           1694.00
3          202409       3  ...                     5              0.00
4          202409       5  ...                     5            663.39

[5 rows x 28 columns]

Passo 04: tratamento/análise de dados

Por fim, basta realizar os processamentos e análises regionais desejadas. Aqui calculamos o número de vagas geradas no estado de Santa Catarina:

13074

Conclusão

Os dados regionais do CAGED permitem analisar o mercado de trabalho de forma detalhada, em termos de setores, educação, rendimento e características pessoais dos trabalhadores brasileiros. Neste exercício mostramos como acessar estas informações online via Python.

Tenha acesso ao código e suporte desse e de mais 500 exercícios no Clube AM!

Quer o código desse e de mais de 500 exercícios de análise de dados com ideias validadas por nossos especialistas em problemas reais de análise de dados do seu dia a dia? Além de acesso a vídeos, materiais extras e todo o suporte necessário para você reproduzir esses exercícios? Então, conheça o Clube AM clicando aqui.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como treinar e selecionar os melhores modelos de previsão no Python?

Em previsão, há uma infinidade de modelos que podem ser usados. O processo de escolha do(s) modelo(s) deve ser empírico-científico, usando métodos que visem avaliar a generalização dos algoritmos para dados novos. Neste artigo, mostramos como implementar a metodologia de validação cruzada com algoritmos de machine learning no Python, exemplificando para a previsão do IPCA.

Como selecionar variáveis para modelos de previsão no Python?

Em oposição à crença popular, grande parte dos modelos de machine learning não produzem previsões magicamente. É papel do cientista de dados executar uma boa engenharia de variáveis para não cair no clássico problema de “garbage in, garbage out” (GIGO) em aprendizado de máquina. Neste sentido, aprender a fazer uma boa seleção de variáveis é fundamental e neste artigo exploramos algumas possibilidades práticas usando o Python.

Resultado IPCA-15 - Novembro/2024

A Análise Macro apresenta os resultados do IPCA-15 de Novembro de 2024, com gráficos elaborados em Python para coleta, tratamento e visualização de dados. Todo o conteúdo, disponível exclusivamente no Clube AM, foi desenvolvido com base nos métodos ensinados nos cursos da Análise Macro, permitindo aos assinantes acesso aos códigos e replicação das análises.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.