Como criar defasagens de uma variável no R

Análise de séries temporais frequentemente exige tratamentos e transformações dos dados, como a criação de defasagens (lag, no inglês) de uma variável. Podemos representar esse procedimento envolvendo o operador lag como:

Ou seja, quando aplicamos a defasagem em um elemento de yt o que obtemos é o valor anterior da série temporal.

No R este procedimento é bastante simples, sendo possível fazê-lo de mais de uma maneira diferente. Vamos a um exemplo prático!

Para reproduzir o exercício a seguir você precisará dos seguintes pacotes:


library(magrittr) # CRAN v2.0.1
library(dplyr) # CRAN v1.0.7
library(timetk) # CRAN v2.6.2
library(tsibbledata) # CRAN v0.2.0

Vamos usar a série temporal do crescimento anual do PIB brasileiro como exemplo. Esses dados estão disponíveis no pacote tsibbledata. Primeiro uma rápida visualização da série:


pib_br <- tsibbledata::global_economy %>%
dplyr::filter(Country == "Brazil") %>%
dplyr::select(Year, Growth)

pib_br %>%
timetk::plot_time_series(
.date_var = Year,
.value = Growth,
.title = "Brasil: crescimento anual do PIB",
.y_lab = "%",
.line_size = 2,
.smooth = FALSE,
.interactive = FALSE
)

O objeto que temos é do tipo data.frame com características de série temporal (tsibble), muito vantajoso para procedimentos de tratamento de dados usando tidyverse. Neste formato, para criar uma defasagem da variável podemos simplesmente adicionar uma coluna aplicando a função dplyr::lag na variável de interesse. Simples, não?


pib_br %>% dplyr::mutate(growth_lag1 = dplyr::lag(Growth))

Caso o usuário precise criar múltiplas defasagens de uma variável, não há problema. O pacote timetk possui a função tk_augment_lags() que facilita o trabalho, basta apontar uma sequência de lags a serem criados, por exemplo de 1 até 10:


pib_br %>% timetk::tk_augment_lags(Growth, .lags = 1:10)

 

Saiba mais:

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Decomposição do Impulso de Crédito no Brasil usando Python

Neste exercício, mostramos como o Python pode ser utilizado para calcular uma métrica central para a compreensão da dinâmica entre crédito e atividade econômica no Brasil, a partir de um ciclo completo e altamente reprodutível de coleta, tratamento e análise de dados.

Aplicando o Time Series Transformer para prever inflação (IPCA)

Neste exercício, exploramos a previsão de séries temporais utilizando o Temporal Fusion Transformer (TFT). O TFT é uma arquitetura de Deep Learning baseada em mecanismos de atenção, desenhada especificamente para lidar com múltiplas variáveis e horizontes de previsão longos, mantendo a interpretabilidade — uma característica frequentemente ausente em modelos de "caixa-preta".

Análise do Payroll norte-americano com Python

O Payroll norte-americano é o termômetro da economia global. No post de hoje, mostro como analisar esse indicador usando Python e as bibliotecas Pandas e Plotnine. Saia do básico e aprenda a visualizar a geração de empregos nos EUA de forma profissional.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.