Como importar os textos do COPOM para análise de sentimentos no Python?

Os textos divulgados pelo COPOM, sejam os comunicados ou atas, são o ponto de partida para diversos tipos de análises quantitativas, como a análise de sentimentos, e qualitativas, como uma análise de cenário econômico. Neste artigo, mostramos como coletar estes textos de forma automatizada usando web scrapping e Python.

Para o propósito deste artigo, que é a primeira parte de um exercício maior de análise de sentimentos, vamos focar em coletas as atas do COPOM na versão em inglês.

Para obter o código e o tutorial deste exercício faça parte do Clube AM e receba toda semana os códigos em R/Python, vídeos, tutoriais e suporte completo para dúvidas.

Bibliotecas

Primeiro, importamos as bibliotecas de Python necessárias no código.

  • pandas
  • requests
  • os
  • langchain_community

Coleta de dados

Em seguida, usando o navegador Google Chrome, siga estas etapas:

  1. Acessar o site em inglês das atas do COPOM: https://www.bcb.gov.br/en/publications/copomminutes
  2. Clicar com botão direito em cima do botão Download

  3. Clicar em Inspecionar
  4. Clicar em Network

  5. Pressionar Ctrl+R
  6. No campo Filter, pesquisar por “minutes”

  7. Nos resultados, encontrar o serviço de API “ultimas” e copiar o link até a parte “filtro=”, assim: https://www.bcb.gov.br/api/servico/sitebcb/copomminutes/ultimas?quantidade=3&filtro=

  8. Requisitar os metadados das últimas 50 atas, mudando o parâmetro “quantidate” no link acima, através das bibliotecas requests e pandas

Como resultado, temos uma tabela DataFrame com os links para os PDFs das últimas 50 atas:

Em seguida, usamos a biblioteca requests para baixar cada PDF de cada link. Como resultado, teremos 50 arquivos PDFs salvos na pasta de trabalho corrente:

Importação de dados

Por fim, com os textos disponibilizados localmente em formato PDF, podemos avançar para a etapa de transformar as informações de PDF para texto (string) diretamente no Python. Usamos a biblioteca pypdf e a langchain_community para fazer esta transformações em poucas linhas de código.

Como resultado, teremos uma tabela com os metadados da ata do COPOM e o texto bruto associado:

Conclusão

Os textos divulgados pelo COPOM, sejam os comunicados ou atas, são o ponto de partida para diversos tipos de análises quantitativas, como a análise de sentimentos, e qualitativas, como uma análise de cenário econômico. Neste artigo, mostramos como coletar estes textos de forma automatizada usando web scrapping e Python.

Tenha acesso ao código e suporte desse e de mais 500 exercícios no Clube AM!

Quer o código desse e de mais de 500 exercícios de análise de dados com ideias validadas por nossos especialistas em problemas reais de análise de dados do seu dia a dia? Além de acesso a vídeos, materiais extras e todo o suporte necessário para você reproduzir esses exercícios? Então, fale com a gente no Whatsapp e veja como fazer parte do Clube AM, clicando aqui.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como planejar um pipeline de previsão macroeconômica: da coleta ao dashboard

Montar um pipeline de previsão macroeconômica não é apenas uma tarefa técnica — é um exercício de integração entre dados, modelos e automação. Neste post, apresento uma visão geral de como estruturar esse processo de ponta a ponta, da coleta de dados até a construção de um dashboard interativo, que exibe previsões automatizadas de inflação, câmbio, PIB e taxa Selic.

Coletando e integrando dados do BCB, IBGE e IPEA de forma automatizada

Quem trabalha com modelagem e previsão macroeconômica sabe o quanto é demorado reunir dados de diferentes fontes — Banco Central, IBGE, IPEA, FRED, IFI... Cada um com sua API, formato, frequência e estrutura. Esse gargalo de coleta e padronização consome tempo que poderia estar sendo usado na análise, nos modelos ou na comunicação dos resultados.

Foi exatamente por isso que criamos uma rotina de coleta automatizada, que busca, trata e organiza séries temporais econômicas diretamente das APIs oficiais, pronta para ser integrada a pipelines de previsão, dashboards ou agentes de IA econometristas.

Criando operações SQL com IA Generativa no R com querychat

No universo da análise de dados, a velocidade para obter respostas é um diferencial competitivo. Frequentemente, uma simples pergunta de negócio — “Qual foi nosso produto mais vendido no último trimestre na região Nordeste?” — inicia um processo que envolve abrir o RStudio, escrever código dplyr ou SQL, executar e, finalmente, obter a resposta. E se pudéssemos simplesmente perguntar isso aos nossos dados em português, diretamente no nosso dashboard Shiny?

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.