Devemos usar a métrica MAPE em previsão de demanda?

A previsão de demanda é um componente essencial da análise econômica e empresarial. Para avaliar a precisão das previsões, diversas métricas de erro são utilizadas. Entre elas, o Erro Percentual Absoluto Médio (MAPE - Mean Absolute Percentage Error) é uma das mais conhecidas.

Definição do MAPE

O MAPE é definido como a média dos erros absolutos percentuais entre os valores reais e os previstos:

    \[MAPE = \frac{1}{n} \sum_{i=1}^{n} \left| \frac{Y_i - \hat{Y}_i}{Y_i} \right| \times 100\]

Onde:

  • Y_i é o valor real na observação i;
  • \hat{Y}_i é o valor previsto;
  • n é o número total de observações.

Vantagens do MAPE

  1. Facilidade de Interpretação: Expressa o erro em termos percentuais, facilitando a comunicação dos resultados.
  2. Escala Invariante: Pode ser comparado entre diferentes séries temporais, pois não depende da magnitude dos valores.
  3. Amplamente Utilizado: É uma métrica conhecida e frequentemente encontrada na literatura.

Desvantagens do MAPE

  1. Problema com Valores Pequenos: Se Y_i for próximo de zero, o erro percentual explode, tornando o MAPE menos confiável.
  2. Assimetria: Penaliza mais previsões que superestimam a demanda do que aquelas que a subestimam. Exemplo: se Y_i=150 e \hat Y_i=100, temos um MAPE de 33%, enquanto que se Y_i=100 e \hat Y_i=150, temos um MAPE de 50%.
  3. Não Diferenciável em Zero: Para séries com valores negativos ou zeros, o MAPE não pode ser calculado diretamente sem ajustes.

Alternativas ao MAPE

Dada as limitações do MAPE, outras métricas são frequentemente recomendadas:

  • Mean Absolute Scaled Error (MASE): Considera a escala dos dados.
  • Symmetric Mean Absolute Percentage Error (sMAPE): Ajusta a fórmula para evitar assimetria.
  • Root Mean Squared Error (RMSE): Penaliza grandes erros mais do que pequenos.

Exemplo Prático em Python

A seguir, um exemplo prático de cálculo do MAPE em Python:

MAPE: 4.57%

Conclusão

O MAPE é uma métrica útil, mas apresenta limitações que devem ser consideradas ao avaliar previsões de demanda. Dependendo do contexto, outras métricas podem ser mais apropriadas para medir a precisão da previsão.

Referências

Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy. International Journal of Forecasting, 22(4), 679-688.

Quer aprender mais?

Conheça nossa Formação do Zero à Análise de Dados Econômicos e Financeiros usando Python e Inteligência Artificial. Aprenda do ZERO a coletar, tratar, construir modelos e apresentar dados econômicos e financeiros com o uso de Python e IA. 

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como planejar um pipeline de previsão macroeconômica: da coleta ao dashboard

Montar um pipeline de previsão macroeconômica não é apenas uma tarefa técnica — é um exercício de integração entre dados, modelos e automação. Neste post, apresento uma visão geral de como estruturar esse processo de ponta a ponta, da coleta de dados até a construção de um dashboard interativo, que exibe previsões automatizadas de inflação, câmbio, PIB e taxa Selic.

Coletando e integrando dados do BCB, IBGE e IPEA de forma automatizada

Quem trabalha com modelagem e previsão macroeconômica sabe o quanto é demorado reunir dados de diferentes fontes — Banco Central, IBGE, IPEA, FRED, IFI... Cada um com sua API, formato, frequência e estrutura. Esse gargalo de coleta e padronização consome tempo que poderia estar sendo usado na análise, nos modelos ou na comunicação dos resultados.

Foi exatamente por isso que criamos uma rotina de coleta automatizada, que busca, trata e organiza séries temporais econômicas diretamente das APIs oficiais, pronta para ser integrada a pipelines de previsão, dashboards ou agentes de IA econometristas.

Criando operações SQL com IA Generativa no R com querychat

No universo da análise de dados, a velocidade para obter respostas é um diferencial competitivo. Frequentemente, uma simples pergunta de negócio — “Qual foi nosso produto mais vendido no último trimestre na região Nordeste?” — inicia um processo que envolve abrir o RStudio, escrever código dplyr ou SQL, executar e, finalmente, obter a resposta. E se pudéssemos simplesmente perguntar isso aos nossos dados em português, diretamente no nosso dashboard Shiny?

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.