Análise de Fundos Imobiliários com R e Python

Fundos Imobiliários são fundos de investimentos que compreendem empreendimentos imobiliarios, sejam em sua forma física (tijolo) ou em títulos financeiros viculados ao mercado imobiliário (papel). No post de hoje, mostraremos como criar um análise dos retornos de fundos imobiliário utilizando o R e o Python.

O objetivo do post será construir um código em R e Python para analisar o retorno e o risco de cinco fundos imobiliários escolhidos aleatoriamente no período de 01/07/2021 até 01/07/2022. Trataremos da importação dos preços dos fundos, do calculo do retorno mensal, anualizado e acumulado, e por fim do desvio padrão anualizado (como medida de risco passado). Iremos também construir gráficos para entender os resultados obtido.

Análise com o R

No R, iremos utilizar o pacote {tidyquant}, que funciona como um wrapper de funções de outro pacotes de manipulação e cálculo de dados financeiros. O {tidyquant} permitirá utilizarmos os dados em uma estrutura tidy.

Análise com o Python

No Python, importaremos os dados com a biblioteca pandas datareader e o yfinance, bem como utilizaremos o pandas e o numpy para realizar o cálculos dos retornos e do desvio padrão.

__________________________________________________

Quer saber mais?

Veja nossos cursos da trilha de Finanças Quantitativas.

_________________________________________________

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Quais são as ferramentas de IA?

Um aspecto crucial dos Agentes de IA é a sua capacidade de tomar ações, que acontecem por meio do uso de Ferramentas (Tools). Neste artigo, vamos aprender o que são Tools, como defini-las de forma eficaz e como integrá-las ao seu Agente por meio da System Prompt. Ao fornecer as Tools certas para o seu Agente — e ao descrever claramente como essas Tools funcionam — você pode aumentar drasticamente o que sua IA é capaz de realizar.

Otimizando um Portfólio de Investimentos com Machine Learning

A construção de portfólio ótimo refere-se ao processo de alocar eficientemente capital entre um conjunto predefinido de ativos ou títulos. O campo da construção de portfólio tem sido extensivamente estudado por acadêmicos e profissionais desde a década de 1950, quando Markowitz introduziu sua inovadora abordagem de média-variância para a construção de portfólio. Diante disso, podemos melhorar o processo de alocação de peso de um investimento em um portfólio através do Aprendizado não supervisionado com a aplicação do Hierarchical Risk Parity (HRP). Neste exercício, realizamos uma introdução ao método e mostramos os resultados de um exemplo criado através do Python.

Como usar IA + Python para o Mercado Financeiro?

Neste post, mostramos como a Inteligência Artificial, aliada à linguagem Python, está revolucionando o mercado financeiro. Exploramos as principais áreas onde essa tecnologia pode ser aplicada — como gestão de carteiras, análise de demonstrações contábeis, estratégias quantitativas, trading e análise macroeconômica — com foco em aplicações práticas e exemplos voltados para o contexto brasileiro.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.