Análise de Fundos Imobiliários com R e Python

Fundos Imobiliários são fundos de investimentos que compreendem empreendimentos imobiliarios, sejam em sua forma física (tijolo) ou em títulos financeiros viculados ao mercado imobiliário (papel). No post de hoje, mostraremos como criar um análise dos retornos de fundos imobiliário utilizando o R e o Python.

O objetivo do post será construir um código em R e Python para analisar o retorno e o risco de cinco fundos imobiliários escolhidos aleatoriamente no período de 01/07/2021 até 01/07/2022. Trataremos da importação dos preços dos fundos, do calculo do retorno mensal, anualizado e acumulado, e por fim do desvio padrão anualizado (como medida de risco passado). Iremos também construir gráficos para entender os resultados obtido.

Análise com o R

No R, iremos utilizar o pacote {tidyquant}, que funciona como um wrapper de funções de outro pacotes de manipulação e cálculo de dados financeiros. O {tidyquant} permitirá utilizarmos os dados em uma estrutura tidy.

Análise com o Python

No Python, importaremos os dados com a biblioteca pandas datareader e o yfinance, bem como utilizaremos o pandas e o numpy para realizar o cálculos dos retornos e do desvio padrão.

__________________________________________________

Quer saber mais?

Veja nossos cursos da trilha de Finanças Quantitativas.

_________________________________________________

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como Criar um Agente Analista Financeiro com LangGraph e Dados da CVM

Este post apresenta a construção de um sistema multiagente para análise financeira automatizada com LangGraph. A partir dos dados das demonstrações contábeis da CVM, mostramos como agentes especializados podem interpretar perguntas, consultar bancos de dados e gerar análises financeiras, simulando o trabalho de um analista.

O que é e como funcionam Sistemas Multi-Agentes

Sistemas multi-agentes (MAS) representam uma nova forma de estruturar aplicações de inteligência artificial, especialmente úteis para lidar com problemas complexos e distribuídos. Em vez de depender de um único agente generalista, esses sistemas são compostos por múltiplos agentes especializados que colaboram, competem ou se coordenam para executar tarefas específicas. Neste post, explicamos o que são os MAS, seus principais componentes (como LLMs, ferramentas e processos) e as arquiteturas mais comuns.

Como criar um Agente de IA coletor de dados

A tecnologia de agentes de IA está democratizando o acesso e a manipulação de dados econômicos complexos, tornando-a acessível mesmo para aqueles sem experiência em programação. Neste post discutimos a criação de agentes de IA para coletar dados econômicos brasileiros usando linguagem natural, como "Qual é a expectativa do IPCA para 2025?".

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.