Beta dinâmico usando GARCH no R

O Beta de mercado é um indicador que relaciona o risco de uma ação com o risco de mercado. O interessante, é a possibilidade de utilizar o GARCH como medida de volatilidade da ação com o objetivo de estimar o coeficiente. No post de hoje iremos ver como obtê-lo usando o R.

O Beta de mercado, também chamado de coeficiente beta,  pode ser obtido através da seguinte equação:

     $$ r_{it} - Rf_{t} = \beta (Rm_{t} - Rf_{t})$$

Em que  r_{it} é o retorno do ativo i, Rf_{t} é o retorno da taxa de juros livre de risco e Rm_{t}, o retorno do índice de mercado, representando o risco sistemático. Através da equação, é possível obter o coeficiente beta, por meio da seguinte fórmula: \beta = \frac{Cov(r_{t}, r_{m,t})}{Var(r_{m,t})}.

Considerando o GARCH, podemos obter a covariância e a variância a partir da teoria estatística. Temos que:

Var(xt + yt) = Var(xt) + 2Cov(xt,yt) + Var(yt)

Var(xt - yt) = Var(xt) - 2Cov(xt,yt) + Var(yt)

Sendo assim, temos que

Cov(xt, yt) = Var(xt+yt) - Var(xt-yt) / 4

Portanto, é possível obter o Beta de mercado variante no tempo usando o GARCH. Vamos utilizar com ferramenta o R para estimar o Beta entre a ITUB4 e Ibovespa no período de 2017 a 2022. Os dados são diários.

Para obter o código de importação do dataset, da construção dos gráficos e também dos códigos subsequentes, faça parte do Clube AM, o repositório especial da Análise Macro.

________________________________________________

Quer se aprofundar no assunto?

Alunos da trilha de Ciência de dados para Economia e Finanças podem aprender a como construir projetos que envolvem dados reais usando modelos econométricos e de Machine Learning com o R.

Referências

TSAY, Ruey S. An introduction to analysis of financial data with R. John Wiley & Sons, 2014.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Criando operações SQL com IA Generativa no R com querychat

No universo da análise de dados, a velocidade para obter respostas é um diferencial competitivo. Frequentemente, uma simples pergunta de negócio — “Qual foi nosso produto mais vendido no último trimestre na região Nordeste?” — inicia um processo que envolve abrir o RStudio, escrever código dplyr ou SQL, executar e, finalmente, obter a resposta. E se pudéssemos simplesmente perguntar isso aos nossos dados em português, diretamente no nosso dashboard Shiny?

Dashboard Financeiro com IA e Shiny Python: Análise de Dados Abertos da CVM

Este artigo apresenta um tutorial completo sobre como construir uma ferramenta de análise financeira de ponta. Utilizando Shiny for Python, demonstramos a automação da coleta de dados das Demonstrações Financeiras Padronizadas (DFP) da CVM e o tratamento dessas informações com Pandas. O ponto alto do projeto é a integração da IA Generativa do Google Gemini, que atua como um assistente de análise, interpretando os dados filtrados pelo usuário e fornecendo insights contábeis e financeiros em tempo real. O resultado é um dashboard dinâmico que democratiza a análise de dados complexos e acelera a tomada de decisão.

Econometria, ML ou IA para previsão da PMS?

Prever a Pesquisa Mensal de Serviços (PMS/IBGE) é um desafio por natureza: trata-se de uma série mensal, sujeita a volatilidade e choques que vão de fatores sazonais a mudanças estruturais no setor. Para enfrentar esse problema, realizamos um exercício de comparação entre três abordagens de modelagem: econometria tradicional (ARIMA), machine learning (XGBoost) e inteligência artificial (TimeGPT).

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.