Beta dinâmico usando GARCH no R

O Beta de mercado é um indicador que relaciona o risco de uma ação com o risco de mercado. O interessante, é a possibilidade de utilizar o GARCH como medida de volatilidade da ação com o objetivo de estimar o coeficiente. No post de hoje iremos ver como obtê-lo usando o R.

O Beta de mercado, também chamado de coeficiente beta,  pode ser obtido através da seguinte equação:

     $$ r_{it} - Rf_{t} = \beta (Rm_{t} - Rf_{t})$$

Em que  r_{it} é o retorno do ativo i, Rf_{t} é o retorno da taxa de juros livre de risco e Rm_{t}, o retorno do índice de mercado, representando o risco sistemático. Através da equação, é possível obter o coeficiente beta, por meio da seguinte fórmula: \beta = \frac{Cov(r_{t}, r_{m,t})}{Var(r_{m,t})}.

Considerando o GARCH, podemos obter a covariância e a variância a partir da teoria estatística. Temos que:

Var(xt + yt) = Var(xt) + 2Cov(xt,yt) + Var(yt)

Var(xt - yt) = Var(xt) - 2Cov(xt,yt) + Var(yt)

Sendo assim, temos que

Cov(xt, yt) = Var(xt+yt) - Var(xt-yt) / 4

Portanto, é possível obter o Beta de mercado variante no tempo usando o GARCH. Vamos utilizar com ferramenta o R para estimar o Beta entre a ITUB4 e Ibovespa no período de 2017 a 2022. Os dados são diários.

Para obter o código de importação do dataset, da construção dos gráficos e também dos códigos subsequentes, faça parte do Clube AM, o repositório especial da Análise Macro.

________________________________________________

Quer se aprofundar no assunto?

Alunos da trilha de Ciência de dados para Economia e Finanças podem aprender a como construir projetos que envolvem dados reais usando modelos econométricos e de Machine Learning com o R.

Referências

TSAY, Ruey S. An introduction to analysis of financial data with R. John Wiley & Sons, 2014.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como criar um Agente de IA analista de dados

Agentes de IA podem automatizar a coleta, tratamento e análise de indicadores econômicos, entregando insights prontos para a tomada de decisão. Combinando modelos de linguagem (LLM) avançados com ferramentas de acesso a dados, é possível construir soluções que buscam informações em tempo real e as processam de forma autônoma. Neste post mostramos uma visão geral sobre como isso tudo funciona.

O que é e como funcionam Sistemas Multi-Agentes

Sistemas multi-agentes (MAS) representam uma nova forma de estruturar aplicações de inteligência artificial, especialmente úteis para lidar com problemas complexos e distribuídos. Em vez de depender de um único agente generalista, esses sistemas são compostos por múltiplos agentes especializados que colaboram, competem ou se coordenam para executar tarefas específicas. Neste post, explicamos o que são os MAS, seus principais componentes (como LLMs, ferramentas e processos) e as arquiteturas mais comuns.

Como criar um Agente de IA coletor de dados

A tecnologia de agentes de IA está democratizando o acesso e a manipulação de dados econômicos complexos, tornando-a acessível mesmo para aqueles sem experiência em programação. Neste post discutimos a criação de agentes de IA para coletar dados econômicos brasileiros usando linguagem natural, como "Qual é a expectativa do IPCA para 2025?".

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.