Coletando dados do Banco Mundial com o R

Ontem, divulguei o pacote OECD de modo que é possível coletar dados da OCDE diretamente para o RStudio. Hoje, a dica é o pacote WDI, que faz coleta de dados do Banco Mundial. Para ilustrar, pego os dados da taxa de poupança e taxa de juros para 2017.


library(WDI)

interest = WDI(country='all',
indicator = 'FR.INR.RINR',
start=2017, end=2017)

saving = WDI(country = 'all',
indicator = 'NY.GNS.ICTR.ZS',
start=2017, end=2017)

Uma vez coletado os dados e depois de algum tratamento, podemos gerar o gráfico abaixo...

Impressiona que em diversas comparações que tenho mostrado por aqui, o Brasil está sempre como um outlier, não é mesmo?

Quer saber mais sobre como usar o R para analisar dados? Conheça o nosso curso de Introdução ao R para Análise de Dados que abriu inscrições ontem, 06/05. O 1º lote está com 30% de desconto, mas deve acabar logo...

Interessados no código do gráfico, basta rolar a barra à direita e colocar o e-mail na nossa newsletter semanal. Toda segunda, envio o código de um dos posts mais comentados e curtidos da semana para a lista!

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como avaliar modelos de IA na previsão macroeconômica?

Descubra como economistas e cientistas de dados estão combinando econometria e inteligência artificial para aprimorar previsões macroeconômicas. Neste post, você vai entender as principais etapas de avaliação de modelos — da preparação dos dados à validação cruzada — e conhecer as métricas e técnicas que revelam quais métodos realmente entregam as melhores previsões. Uma leitura essencial para quem quer compreender o futuro da análise econômica orientada por dados.

Análise exploratória e seleção de séries temporais econômicas para modelagem

Quer entender como transformar dados econômicos brutos em previsões macroeconômicas precisas? Neste post, mostramos passo a passo como realizar a análise exploratória e seleção de séries temporais com Python — desde o tratamento de dados e remoção de multicolinearidade até a escolha das variáveis mais relevantes usando técnicas de machine learning e econometria. Um guia essencial para quem quer unir teoria econômica e inteligência artificial na prática da previsão macroeconômica.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.