Como prever picos de demanda no python

Picos de demanda referem-se ao consumo excessivo em determinado períodos e usualmente exibem sazonalidades múltiplas, principalmente por serem séries temporais de baixa frequência. No post de hoje, iremos tentar prever o pico de demanda diária por energia elétrica no Brasil usando o Python por meio de uma combinação de um modelo MSTL e AutoArima.

O primeiro passo é capturar os dados de curva de energia horária, em MWmed, referente ao Consumo de Energia por meio do site da ONS. Realizamos o procedimento de forma manual, baixando o arquivo .csv. A seguir, importamos o arquivo no Python.

Vemos abaixo o gráfico da série em frequência horária do ínicio do ano de 2022 até 21/12/2022. É visível que há sazonalidade na série, e tomaremos essa sazonalidade com sendo a diária e a semanal.

Uma vez que temos a série, a tarefa será estimar os componentes (tendência e as sazonalidades) por meio de um MSTL e realizar o ajuste da tendência por meio de um AutoArima. O modelo é estimado usando Cross Validation. No resultado abaixo, vemos no mês de setembro os valores previstos e o valor real e podemos comparar ambos. Vemos que de fato o modelo não foi suficiente para estimar o pico de energia nos valores ajustados.

Para entender todo o processo listado acima, com os códigos e video-aula, faça parte do Clube AM, o repositório de código da Análise Macro, contendo exercícios semanais de R e Python.

________________________________________________

Quer se aprofundar no assunto?

Alunos da trilha de Ciência de dados para Economia e Finanças  possuem acesso o curso Analise de dados Macroeconômicos e Financeiros e podem aprender a como construir projetos que envolvem dados reais usando modelos econométricos e de Machine Learning com o R.

Referências
Hyndman, R.J., & Athanasopoulos, G. (2021) Forecasting: principles and practice, 3rd edition, OTexts: Melbourne, Australia. OTexts.com/fpp3.

 

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Criando operações SQL com IA Generativa no R com querychat

No universo da análise de dados, a velocidade para obter respostas é um diferencial competitivo. Frequentemente, uma simples pergunta de negócio — “Qual foi nosso produto mais vendido no último trimestre na região Nordeste?” — inicia um processo que envolve abrir o RStudio, escrever código dplyr ou SQL, executar e, finalmente, obter a resposta. E se pudéssemos simplesmente perguntar isso aos nossos dados em português, diretamente no nosso dashboard Shiny?

Dashboard Financeiro com IA e Shiny Python: Análise de Dados Abertos da CVM

Este artigo apresenta um tutorial completo sobre como construir uma ferramenta de análise financeira de ponta. Utilizando Shiny for Python, demonstramos a automação da coleta de dados das Demonstrações Financeiras Padronizadas (DFP) da CVM e o tratamento dessas informações com Pandas. O ponto alto do projeto é a integração da IA Generativa do Google Gemini, que atua como um assistente de análise, interpretando os dados filtrados pelo usuário e fornecendo insights contábeis e financeiros em tempo real. O resultado é um dashboard dinâmico que democratiza a análise de dados complexos e acelera a tomada de decisão.

Econometria, ML ou IA para previsão da PMS?

Prever a Pesquisa Mensal de Serviços (PMS/IBGE) é um desafio por natureza: trata-se de uma série mensal, sujeita a volatilidade e choques que vão de fatores sazonais a mudanças estruturais no setor. Para enfrentar esse problema, realizamos um exercício de comparação entre três abordagens de modelagem: econometria tradicional (ARIMA), machine learning (XGBoost) e inteligência artificial (TimeGPT).

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.