Como retirar dados de contas públicas municipais via API do SICONFI

Neste texto, iremos mostrar como podemos retirar os dados dos demonstrativos contábeis de entes federativos do Brasil pelo Sistema de Informações Contábeis e Fiscais do Setor Público Brasileiro (SICONFI) via API no R.

Primeiramente, é necessário estar a par dos parâmetros que devem ser colocados como entradas para obter os dados dos diversos tipos de demonstrativos. O site http://apidatalake.tesouro.gov.br/docs/siconfi/ fornece detalhadamente quais parâmetros devem ser fornecidos para cada tipo de demonstrativos, bem como a url base para realizar a requisição do API.

Aqui iremos trabalhar como exemplo a Declaração de Contas Anuais (DCA) Anexo I-D do município de Varginha - Minas Gerais, no qual nos fornecerá as Despesas Orçamentárias por Natureza.

Para o DCA, há 3 parâmetros que devem ser inseridos: an_exercicio (Ano de exercício do demonstrativo); no_anexo (Qual anexo do relatório deseja obter) e id_ente (O código IBGE do ente em questão). Sendo an_exercicio e id_ente obrigatórios para esse demonstrativo em questão.

É fundamental a utilização dos pacotes a seguir.


library(httr)
library(jsonlite)
library(magrittr)
library(tibble)

Em seguida vamos realizar a chamada da API criando uma URL.

# URL da DCA de Varginha no ano de 2020 
url_dca <- paste("https://apidatalake.tesouro.gov.br/ords/siconfi/tt/dca?", # URL base para a chamada 
"an_exercicio=", 2020, "&", # Insere o parâmetro de Ano do exercício 
"no_anexo", "DCA-Anexo+I-D","&", # Insere o parâmetro do Anexo que se deseja obter 
"id_ente=", "3170701", sep = "") # Insere o parâmetro do Ente de acordo com o código IBGE do mesmo

Após isso, devemos realizar a requisição da API usando a função GET do pacote httr, bem como realizar a extração do conteúdo com as funções content e fromJSON dos pacotes httr e jsonlite, respectivamente.


api_dca <- GET(url_dca) 
 
# A chamada irá nos retornar os dados requisitados. Agora só precisamos extrair o conteúdo que nos interessa

json_dca <- api_dca %>%

content(as = "text", encoding = "UTF-8") %>%

fromJSON(flatten = FALSE)

# E após isso transforma-los em um tibble

dca_tb <- as.tibble(json_dca[["items"]])

Desta forma podemos obter os dados do DCA Anexo I-D do município de Varginha. O método pode ser replicado para outros anexos e demonstrativos, bem como para qualquer outro Ente do Brasil.

_________________

(*) Gostou? Conheça nosso Curso de Análise de Conjuntura usando o R.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como preparar dados para usar na IA?

Este tutorial exemplifica um pipeline RAG utilizando as atas do Comitê de Política Monetária - COPOM do Banco Central do Brasil (BCB). O objetivo será construir uma interface simples de chat que permita ao usuário fazer perguntas sobre as atas do comitê e obter respostas acuradas usando inteligência artificial.

Automatizando Análises Econômicas com LangChain e LangGraph: Multi-Agentes com LLMs

A evolução das ferramentas baseadas em modelos de linguagem (LLMs) está transformando o modo como realizamos análises econômicas. Neste artigo, apresentamos como utilizar LangChain e LangGraph, duas das bibliotecas mais relevantes para a orquestração de fluxos complexos com agentes de IA, integrando-os com o Google Gemini. O foco será a construção de uma pipeline multi-agente para análise econômica utilizando dados reais do Brasil.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.