Dados históricos de pib per capita com o pacote maddison

Em uma noite de insônia, navegando pelo meu feed no facebook, acabei vendo um post do professor Carlos Eduardo Gonçalves com um gráfico de renda per capita fazendo referência ao projeto Maddison; que tem o ousado objetivo de estimar essa variável para todos os países do mundo desde os anos mais remotos. Acabei fazendo o que todo R Lover faria: dei um google para ver se tinha um pacote para o projeto. E, claro, tinha...

Acabei, então, dando uma vasculhada no dataset e escrevi algumas linhas de código, após comer um sanduíche... 🙂


library(maddison)
library(ggplot2)
library(scales)
library(png)
library(grid)

script começa carregando - depois de ter instalado o mesmo, obviamente - o pacote maddison. Depois carreguei o pacote ggplot2 e alguns pacotes acessórios a ele, para produzir um gráfico mais bonitinho... Antes, claro, como o dataset é imenso - tem 45.318 observações para 9 variáveis - eu fiz um subset do que eu estava interessado para poder montar um gráfico...


df = subset(maddison, year>='1870-01-01' &
iso2c %in% c('BR', 'US', 'CL', 'JP', 'KR'))

Com o código acima, eu peguei os dados do pib per capita para Brasil, Estados Unidos, Chile, Japão e Coréia do Sul desde 1870, quando os primeiros dados para o Brasil estavam disponíveis. Com esses dados, construí o gráfico abaixo.

Algumas coisas me chamaram atenção nesse gráfico. Observe que tínhamos em 1870 a mesma renda per capita do Japão, que nos deixou para trás. Em 1980, tínhamos a mesma renda da Coreia do Sul, que também nos deixou para trás. Nesses 30 anos, diga-se, o Chile nos deu um banho de crescimento. E os EUA mantém uma linha praticamente linear de crescimento.

Fico pensando até quando o Brasil vai ficar para trás... Mas, isso já é um outro tema...

Caso queira receber o código do gráfico acima, rola a barrinha à direita e coloca seu e-mail na nossa newsletter! Na próxima segunda-feira, vou enviar algumas coisas bem legais para a lista!

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como usar Modelos de Linguagem no R com o pacote {elmer}

Na análise de dados contemporânea, o uso de Modelos de Linguagem (LLMs) vem se consolidando como uma ferramenta poderosa para automatizar e aprimorar tarefas analíticas. Ao integrarmos LLMs a pacotes como o ellmer, podemos ampliar nossas capacidades de extração, interpretação e automação de dados no ambiente R. Neste post, exploramos o papel desses modelos e detalhamos como o ellmer opera dentro do universo da linguagem de programação R.

Introdução ao AutoGen: Agentes Inteligentes na Análise Financeira

O AutoGen é um framework da Microsoft que permite criar agentes de IA colaborativos. Na área financeira, pode automatizar a coleta de dados, cálculos de indicadores e geração de relatórios. Este artigo apresenta os conceitos básicos e um exemplo aplicado a ações de empresas.

Como usar LangGraph e LLMs para prever a inflação no Brasil

Este post apresenta um estudo de caso sobre como utilizar o LangGraph e modelos de linguagem para estruturar um sistema multiagente voltado à previsão do IPCA. O exercício cria um sistema que utiliza-se de personas analíticas que trabalham em paralelo, permitindo validar previsões, calcular métricas de erro e consolidar relatórios automatizados. A abordagem demonstra como fluxos multiagentes podem apoiar a análise econômica, oferecendo múltiplas perspectivas e maior consistência nos resultados.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.