Dados históricos de pib per capita com o pacote maddison

Em uma noite de insônia, navegando pelo meu feed no facebook, acabei vendo um post do professor Carlos Eduardo Gonçalves com um gráfico de renda per capita fazendo referência ao projeto Maddison; que tem o ousado objetivo de estimar essa variável para todos os países do mundo desde os anos mais remotos. Acabei fazendo o que todo R Lover faria: dei um google para ver se tinha um pacote para o projeto. E, claro, tinha...

Acabei, então, dando uma vasculhada no dataset e escrevi algumas linhas de código, após comer um sanduíche... 🙂


library(maddison)
library(ggplot2)
library(scales)
library(png)
library(grid)

script começa carregando - depois de ter instalado o mesmo, obviamente - o pacote maddison. Depois carreguei o pacote ggplot2 e alguns pacotes acessórios a ele, para produzir um gráfico mais bonitinho... Antes, claro, como o dataset é imenso - tem 45.318 observações para 9 variáveis - eu fiz um subset do que eu estava interessado para poder montar um gráfico...


df = subset(maddison, year>='1870-01-01' &
iso2c %in% c('BR', 'US', 'CL', 'JP', 'KR'))

Com o código acima, eu peguei os dados do pib per capita para Brasil, Estados Unidos, Chile, Japão e Coréia do Sul desde 1870, quando os primeiros dados para o Brasil estavam disponíveis. Com esses dados, construí o gráfico abaixo.

Algumas coisas me chamaram atenção nesse gráfico. Observe que tínhamos em 1870 a mesma renda per capita do Japão, que nos deixou para trás. Em 1980, tínhamos a mesma renda da Coreia do Sul, que também nos deixou para trás. Nesses 30 anos, diga-se, o Chile nos deu um banho de crescimento. E os EUA mantém uma linha praticamente linear de crescimento.

Fico pensando até quando o Brasil vai ficar para trás... Mas, isso já é um outro tema...

Caso queira receber o código do gráfico acima, rola a barrinha à direita e coloca seu e-mail na nossa newsletter! Na próxima segunda-feira, vou enviar algumas coisas bem legais para a lista!

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como Construir um Monitor de Política Monetária Automatizado com Python?

Descubra como transformar dados do Banco Central em inteligência de mercado com um Monitor de Política Monetária Automatizado. Neste artigo, exploramos o desenvolvimento de uma solução híbrida (Python + R) que integra análise de sentimento das atas do COPOM, cálculo da Regra de Taylor e monitoramento da taxa Selic. Aprenda a estruturar pipelines ETL eficientes e a visualizar insights econômicos em tempo real através de um dashboard interativo criado com Shiny, elevando o nível das suas decisões de investimento.

Qual o efeito de um choque de juros sobre a inadimplência?

Neste exercício, exploramos a relação dinâmica entre o custo do crédito (juros na ponta) e o risco realizado (taxa de inadimplência) através de uma análise exploratória de dados e modelagem econométrica utilizando a linguagem de programação R.

Qual a relação entre benefícios sociais e a taxa de participação do mercado de trabalho?

Este exercício apresenta uma investigação econométrica sobre a persistente estagnação da taxa de participação no mercado de trabalho brasileiro no período pós-pandemia. Utilizando a linguagem R e dados públicos do IBGE e Banco Central, construímos um modelo de regressão linear múltipla com correção de erros robustos (Newey-West). A análise testa a hipótese de que o aumento real das transferências de renda (Bolsa Família/Auxílio Brasil) elevou o salário de reserva, desincentivando o retorno à força de trabalho.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.