Dessazonalizando os dados de focos de queimadas no Brasil

Em post anterior nesse espaço, comecei a investigar o comportamento da série mensal de focos de queimadas no Brasil. A primeira característica marcante da série é sua sazonalidade, que mostrei com a função ggmonthplot do pacote forecast. Agora, vamos retirar essa sazonalidade da série, de modo a investigar outros comportamentos interessantes.

Antes de mais nada, um gráfico da nossa série:


ggplot(data, aes(obs, Focos/1000))+
geom_line(size=.8)+
scale_x_date(breaks = date_breaks("1 year"),
labels = date_format("%Y"))+
theme(axis.text.x=element_text(angle=45, hjust=1))+
labs(x='', y='Mil',
title='Focos de Queimadas no Brasil',
caption='Fonte: http://queimadas.dgi.inpe.br/queimadas/portal')

E o gráfico...

Usando o pacote seasonal, podemos agora dessazonalizar os nossos dados com o código abaixo.


queimadas_sa = final(seas(queimadas))

E abaixo um gráfico da nossa série dessazonalizada.

A linha vermelha é uma média móvel de 24 meses que mostra uma tendência de queda na maior parte da amostra.

_________________

Um script completo estará disponível no Clube do Código quando terminarmos essa série de posts sobre focos de queimadas no Brasil.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como preparar dados para usar na IA?

Este tutorial exemplifica um pipeline RAG utilizando as atas do Comitê de Política Monetária - COPOM do Banco Central do Brasil (BCB). O objetivo será construir uma interface simples de chat que permita ao usuário fazer perguntas sobre as atas do comitê e obter respostas acuradas usando inteligência artificial.

Automatizando Análises Econômicas com LangChain e LangGraph: Multi-Agentes com LLMs

A evolução das ferramentas baseadas em modelos de linguagem (LLMs) está transformando o modo como realizamos análises econômicas. Neste artigo, apresentamos como utilizar LangChain e LangGraph, duas das bibliotecas mais relevantes para a orquestração de fluxos complexos com agentes de IA, integrando-os com o Google Gemini. O foco será a construção de uma pipeline multi-agente para análise econômica utilizando dados reais do Brasil.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.