Dessazonalizando os dados de focos de queimadas no Brasil

Em post anterior nesse espaço, comecei a investigar o comportamento da série mensal de focos de queimadas no Brasil. A primeira característica marcante da série é sua sazonalidade, que mostrei com a função ggmonthplot do pacote forecast. Agora, vamos retirar essa sazonalidade da série, de modo a investigar outros comportamentos interessantes.

Antes de mais nada, um gráfico da nossa série:


ggplot(data, aes(obs, Focos/1000))+
geom_line(size=.8)+
scale_x_date(breaks = date_breaks("1 year"),
labels = date_format("%Y"))+
theme(axis.text.x=element_text(angle=45, hjust=1))+
labs(x='', y='Mil',
title='Focos de Queimadas no Brasil',
caption='Fonte: http://queimadas.dgi.inpe.br/queimadas/portal')

E o gráfico...

Usando o pacote seasonal, podemos agora dessazonalizar os nossos dados com o código abaixo.


queimadas_sa = final(seas(queimadas))

E abaixo um gráfico da nossa série dessazonalizada.

A linha vermelha é uma média móvel de 24 meses que mostra uma tendência de queda na maior parte da amostra.

_________________

Um script completo estará disponível no Clube do Código quando terminarmos essa série de posts sobre focos de queimadas no Brasil.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como usar o Google AI Studio e o Gemini?

Na corrida da IA, novas ferramentas e modelos são lançados quase que diariamente. Neste artigo mostramos como o Google tem competido neste mercado através do AI Studio e do Gemini e damos um exemplo de integração em Python.

Analisando a ancoragem das expectativas de inflação no Python

Se expectativas de inflação ancoradas com a meta são importantes para a economia, analisar o grau de ancoragem é imperativo para economistas e analistas de mercado. Neste exercício mostramos uma forma de aplicar esta análise com uma metodologia desenvolvida pelo FMI. Desde a coleta dos dados, passando pelo modelo e pela visualização de dados, mostramos como analisar a política monetária usando o Python.

Como analisar a DRE de empresas de capital aberto usando o Python

Quando analisamos a demonstração de resultados de uma empresa listada na bolsa de valores, frequentemente recorremos a ferramentas convencionais, que embora sejam úteis, muitas vezes carecem de automação. É aqui que entra o Python. Neste post, exploramos o poder do Python para automatizar o processo de coleta, tratamento e análise dos dados da Demonstração do Resultado do Exercício (DRE) da Eletrobras, utilizando dados fornecidos pela CVM (Comissão de Valores Mobiliários).

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.