Detecção de outliers com o R

Outliers são valores atípicos e distantes das demais observações de um determinado conjunto de dados. A depender do tipo de análise que você esteja fazendo, eles podem distorcer os resultados, levando a conclusões nem sempre verdadeiras. Por isso, é sempre importante fazer uma análise exploratória dos dados, se certificando de que o seu conjunto de dados não está contaminado com esse tipo de problema.

De modo a ilustrar como detectar e descartar outliers no R, vou mostrar aqui a parte introdutória de um exercício relacionando a inflação observada com as expectativas de inflação. Os dados estão disponíveis no Banco Central. Para começar, eu carrego alguns pacotes como abaixo.


## Pacotes
library(rbcb)
library(tidyverse)
library(scales)
library(ggrepel)
library(png)
library(grid)
library(gridExtra)
library(sidrar)
library(readxl)
library(xts)
library(grDevices)
library(ggalt)

Com o pacote rbcb, eu importo os dados de inflação e de expectativa de inflação, já fazendo um tratamento dessa última. O objetivo é ter um tibble com dados mensais de ambas as variáveis.


## Importar expectativas de inflação
expinf = get_twelve_months_inflation_expectations('IPCA',
start_date = '2001-11-01')

expectativa = expinf$mean[expinf$smoothed=='N' & expinf$base==0]
dates = expinf$date[expinf$smoothed=='N' & expinf$base==0]

expinf12 = xts(expectativa, order.by = dates)
expinf12 = apply.monthly(expinf12, FUN=mean)
expinf12 = expinf12[-length(expinf12)]

## Importar inflação
inflacao = get_series(13522, start_date='2001-11-01')

## Juntar dados
data = tibble(date=inflacao$date,
expfocus=as.numeric(expinf12),
inflacao=inflacao$`13522`)
colnames(data) = c('date', 'expfocus', 'inflacao')

Com os dados disponíveis, nós podemos gerar um gráfico de correlação já chamando atenção para os outliers presentes no conjunto de dados. O código abaixo implementa.


select.outliers = data[data$inflacao > min(boxplot.stats(data$inflacao)$out) |
data$expfocus > min(boxplot.stats(data$expfocus)$out),]

ggplot(data, aes(x=inflacao, y=expfocus))+
geom_point(stat='identity')+
geom_encircle(aes(x=inflacao, y=expfocus),
data=select.outliers,
color="red",
size=2,
expand=0.08)+
annotate('text', x=14, y=10,
label='Outliers',
colour='darkblue', size=4.5)+
labs(x='Inflação Observada', y='Expectativa de Inflação',
title='Inflação vs. Expectativa de Inflação no Brasil',
caption='Fonte: analisemacro.com.br com dados do BCB.')

Observe que estou usando a função boxplot.stats do pacote grDevices para construir o intervalo onde vou circular os possíveis outliers do conjunto de dados. Com essa função, nós conseguimos definir um outlier como sendo os valores que estão fora do intervalo composto por [(Q1 - 1,5*IQR), (Q3 + 1,5*IQR)] - para quem é iniciante em estatística, talvez seja necessário conhecer nosso Curso de Estatística usando R e Python A seguir colocamos o gráfico.

Uma vez identificadas as observações consideradas outliers, nós podemos nos livrar dela com o código abaixo.


outliers = c(boxplot.stats(data$inflacao)$out,
boxplot.stats(data$expfocus)$out)

data_outliers = data[-c(which(data$inflacao %in% outliers),
which(data$expfocus %in% outliers)),]

Produzimos agora um gráfico de correlação sem os pontos considerados outliers como abaixo.

Bem melhor, não?

__________________________

(*) Isso e muito mais você aprende em nossos Cursos Aplicados de R e Python.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como planejar um pipeline de previsão macroeconômica: da coleta ao dashboard

Montar um pipeline de previsão macroeconômica não é apenas uma tarefa técnica — é um exercício de integração entre dados, modelos e automação. Neste post, apresento uma visão geral de como estruturar esse processo de ponta a ponta, da coleta de dados até a construção de um dashboard interativo, que exibe previsões automatizadas de inflação, câmbio, PIB e taxa Selic.

Coletando e integrando dados do BCB, IBGE e IPEA de forma automatizada

Quem trabalha com modelagem e previsão macroeconômica sabe o quanto é demorado reunir dados de diferentes fontes — Banco Central, IBGE, IPEA, FRED, IFI... Cada um com sua API, formato, frequência e estrutura. Esse gargalo de coleta e padronização consome tempo que poderia estar sendo usado na análise, nos modelos ou na comunicação dos resultados.

Foi exatamente por isso que criamos uma rotina de coleta automatizada, que busca, trata e organiza séries temporais econômicas diretamente das APIs oficiais, pronta para ser integrada a pipelines de previsão, dashboards ou agentes de IA econometristas.

Criando operações SQL com IA Generativa no R com querychat

No universo da análise de dados, a velocidade para obter respostas é um diferencial competitivo. Frequentemente, uma simples pergunta de negócio — “Qual foi nosso produto mais vendido no último trimestre na região Nordeste?” — inicia um processo que envolve abrir o RStudio, escrever código dplyr ou SQL, executar e, finalmente, obter a resposta. E se pudéssemos simplesmente perguntar isso aos nossos dados em português, diretamente no nosso dashboard Shiny?

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.