Dicas de R: dados da Zona Euro

E aí pessoal! Para o Dicas de R dessa semana, vamos mostrar como acessar dados macroeconômicos da Zona do Euro, e mostrar uma breve visualização deles conforme fazemos nos nossos cursos com dados brasileiros. Os dados estão disponíveis no Observatório Macroeconômico do CEPREMAP, e são distribuídos em 4 arquivos:

1. O arquivo sw03 contém dados atualizados para a Zona do Euro de uma tabela utilizada para um modelo DSGE em Smets e Wouters (2003)
2. O arquivo financial contém dados financeiros conforme Christiano et al.(2014)
3. O arquivo fiscal contém dados de impostos e do governo conforme Paredes et al. (2014)
4. O arquivo open contém dados sobre o setor externo da Zona do Euro, como demanda externa, taxa de juros externa, preço de petróleo, importações e exportações, etc.

Os arquivos são atualizados com frequência, e o método de coleta deles é explicado no site do CEPREMAP para quem quiser saber mais. O código abaixo baixa os arquivos e os transforma em um único tibble:

library(tidyverse)
sw03 <- read_csv("https://shiny.cepremap.fr/data/EA_SW_rawdata.csv") %>%
filter(period >="1980-01-01")

fiscal <- read_csv("https://shiny.cepremap.fr/data/EA_Fipu_rawdata.csv")

financial <- read_csv("https://shiny.cepremap.fr/data/EA_Finance_rawdata.csv")

open <- read_csv("https://shiny.cepremap.fr/data/EA_Open_rawdata.csv")

agregado <- sw03 %>%
inner_join(fiscal,by="period") %>%
inner_join(financial,by="period") %>%
inner_join(open,by="period") %>%
mutate(employrt = employ/pop)

A tabela é extensa, possuindo desde dados mais comuns, como taxas de juros de curto e longo prazo, PIB e consumo, a dados mais interessantes, como impostos e subsídios, contribuição dos trabalhadores, empréstimos para domicílios e instituições não-financeiras, etc.

Vamos utilizar agora o ggplot para visualizar algumas dessas séries. É importante notar que a taxa de emprego utilizada não é sobre a população economicante ativa, e sim sobre a população total, logo não pode ser comparada com dados de outras áreas. Para encontrar a taxa usual, seria preciso acessar os dados desagregados de cada país.

library(ggplot2)
library(ggthemes)
library(scales)
library(ggrepel)
breaks_fun <- function(x) {
if (max(x) > 2000000) {
c(1600000, 2000000, 2400000)
} else if (max(x) > 1400000) {
seq(800000,1500000,200000)
} else if (max(x) > 500000) {
seq(300000, 600000, 100000)
} else {
seq(0.6, 0.75, 0.03)
}

}

agregado %>% rename("Consumo"=conso, "PIB"=gdp, "Investimento"=inves,
"Taxa de emprego" = employrt) %>%
pivot_longer(!period, names_to = "dados", values_to = "value") %>%
filter(dados %in% c("Consumo", "PIB", "Investimento", "Taxa de emprego")) %>%
ggplot(aes(x=period, y = value, colour=dados))+
geom_line(size = 1.1)+
facet_wrap(~dados, scales = 'free_y')+
scale_x_date(breaks = date_breaks("5 years"),
labels = date_format("%Y"))+
scale_y_continuous(breaks = breaks_fun,
labels = function(x) format(x, big.mark = ",", scientific = FALSE),
limits=c(NA, NA))+
theme_fivethirtyeight()+
theme(axis.text.x=element_text(angle=45, hjust=1),
legend.position = 'none',
axis.title.x=element_blank(),
strip.text = element_text(size=10, face='bold'))+
labs(y='',
title='Principais variáveis macroeconômicas - Zona do Euro',
caption='Fonte: analisemacro.com.br com dados do CEPREMAP')

_____________________

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Tratamento e transformação de séries temporais macroeconômicas para modelagem

"Garbage in, garbage out" é a regra de ouro na previsão macroeconômica. Antes de aplicar qualquer modelo de IA ou econometria para prever indicadores como o IPCA ou o PIB, existe um trabalho crucial de tratamento de dados. Neste post, abrimos os bastidores do nosso dashboard de previsões e mostramos o passo a passo para transformar dados brutos de múltiplas fontes (como BCB, IBGE e FRED) em séries prontas para modelagem. Veja como lidamos com diferentes frequências, aplicamos transformações e usamos metadados para criar um pipeline de dados robusto e automatizado.

Como planejar um pipeline de previsão macroeconômica: da coleta ao dashboard

Montar um pipeline de previsão macroeconômica não é apenas uma tarefa técnica — é um exercício de integração entre dados, modelos e automação. Neste post, apresento uma visão geral de como estruturar esse processo de ponta a ponta, da coleta de dados até a construção de um dashboard interativo, que exibe previsões automatizadas de inflação, câmbio, PIB e taxa Selic.

Coletando e integrando dados do BCB, IBGE e IPEA de forma automatizada

Quem trabalha com modelagem e previsão macroeconômica sabe o quanto é demorado reunir dados de diferentes fontes — Banco Central, IBGE, IPEA, FRED, IFI... Cada um com sua API, formato, frequência e estrutura. Esse gargalo de coleta e padronização consome tempo que poderia estar sendo usado na análise, nos modelos ou na comunicação dos resultados.

Foi exatamente por isso que criamos uma rotina de coleta automatizada, que busca, trata e organiza séries temporais econômicas diretamente das APIs oficiais, pronta para ser integrada a pipelines de previsão, dashboards ou agentes de IA econometristas.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.