Dicas de R: dados da Zona Euro

E aí pessoal! Para o Dicas de R dessa semana, vamos mostrar como acessar dados macroeconômicos da Zona do Euro, e mostrar uma breve visualização deles conforme fazemos nos nossos cursos com dados brasileiros. Os dados estão disponíveis no Observatório Macroeconômico do CEPREMAP, e são distribuídos em 4 arquivos:

1. O arquivo sw03 contém dados atualizados para a Zona do Euro de uma tabela utilizada para um modelo DSGE em Smets e Wouters (2003)
2. O arquivo financial contém dados financeiros conforme Christiano et al.(2014)
3. O arquivo fiscal contém dados de impostos e do governo conforme Paredes et al. (2014)
4. O arquivo open contém dados sobre o setor externo da Zona do Euro, como demanda externa, taxa de juros externa, preço de petróleo, importações e exportações, etc.

Os arquivos são atualizados com frequência, e o método de coleta deles é explicado no site do CEPREMAP para quem quiser saber mais. O código abaixo baixa os arquivos e os transforma em um único tibble:

library(tidyverse)
sw03 <- read_csv("https://shiny.cepremap.fr/data/EA_SW_rawdata.csv") %>%
filter(period >="1980-01-01")

fiscal <- read_csv("https://shiny.cepremap.fr/data/EA_Fipu_rawdata.csv")

financial <- read_csv("https://shiny.cepremap.fr/data/EA_Finance_rawdata.csv")

open <- read_csv("https://shiny.cepremap.fr/data/EA_Open_rawdata.csv")

agregado <- sw03 %>%
inner_join(fiscal,by="period") %>%
inner_join(financial,by="period") %>%
inner_join(open,by="period") %>%
mutate(employrt = employ/pop)

A tabela é extensa, possuindo desde dados mais comuns, como taxas de juros de curto e longo prazo, PIB e consumo, a dados mais interessantes, como impostos e subsídios, contribuição dos trabalhadores, empréstimos para domicílios e instituições não-financeiras, etc.

Vamos utilizar agora o ggplot para visualizar algumas dessas séries. É importante notar que a taxa de emprego utilizada não é sobre a população economicante ativa, e sim sobre a população total, logo não pode ser comparada com dados de outras áreas. Para encontrar a taxa usual, seria preciso acessar os dados desagregados de cada país.

library(ggplot2)
library(ggthemes)
library(scales)
library(ggrepel)
breaks_fun <- function(x) {
if (max(x) > 2000000) {
c(1600000, 2000000, 2400000)
} else if (max(x) > 1400000) {
seq(800000,1500000,200000)
} else if (max(x) > 500000) {
seq(300000, 600000, 100000)
} else {
seq(0.6, 0.75, 0.03)
}

}

agregado %>% rename("Consumo"=conso, "PIB"=gdp, "Investimento"=inves,
"Taxa de emprego" = employrt) %>%
pivot_longer(!period, names_to = "dados", values_to = "value") %>%
filter(dados %in% c("Consumo", "PIB", "Investimento", "Taxa de emprego")) %>%
ggplot(aes(x=period, y = value, colour=dados))+
geom_line(size = 1.1)+
facet_wrap(~dados, scales = 'free_y')+
scale_x_date(breaks = date_breaks("5 years"),
labels = date_format("%Y"))+
scale_y_continuous(breaks = breaks_fun,
labels = function(x) format(x, big.mark = ",", scientific = FALSE),
limits=c(NA, NA))+
theme_fivethirtyeight()+
theme(axis.text.x=element_text(angle=45, hjust=1),
legend.position = 'none',
axis.title.x=element_blank(),
strip.text = element_text(size=10, face='bold'))+
labs(y='',
title='Principais variáveis macroeconômicas - Zona do Euro',
caption='Fonte: analisemacro.com.br com dados do CEPREMAP')

_____________________

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

O que é Agentic RAG e o que o diferencia de RAG?

Neste post, explicamos o que é o Agentic RAG, como ele se diferencia do RAG tradicional e apresentamos um estudo de caso construído com base nas Atas do COPOM, mostrando passo a passo como criar um agente que busca, avalia, reescreve e responde perguntas sobre política monetária.

Como Criar um Agente de IA Econometrista

Criar um Agente de IA Econometrista envolve construir um sistema autônomo capaz de entender uma solicitação em linguagem natural, buscar dados econômicos, realizar análises e aplicar modelos econométricos para entregar uma resposta completa. A abordagem mais eficaz é estruturar o sistema em múltiplos agentes especializados, cada um com um papel definido, que colaboram para resolver a tarefa. Neste post abordamos o desenvolvimento deste sistema de IA com Python.

Como criar um Agente de IA analista de dados

Agentes de IA podem automatizar a coleta, tratamento e análise de indicadores econômicos, entregando insights prontos para a tomada de decisão. Combinando modelos de linguagem (LLM) avançados com ferramentas de acesso a dados, é possível construir soluções que buscam informações em tempo real e as processam de forma autônoma. Neste post mostramos uma visão geral sobre como isso tudo funciona.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.