Dicas de R: o pacote seasonal

Fala galera, nessa semana no Dicas de R vamos fazer um overview do pacote seasonal. Criado para a dessazonalização de séries, o pacote é uma interface em R para o X13-ARIMA-SEATS, permitindo que você possa utilizar as funcionalidades desse programa dentro do próprio R. Vamos testar utilizar ele para a série da variação mensal do IPCA, então começamos a análise importando os dados:

library(sidrar)
library(tidyverse)
library(lubridate)
library(ggplot2)
library(scales)

ipca_base <- get_sidra(api = "/t/1737/n1/all/p/all/v/63")

ipca <- ipca_base %>% #ipca trimestralizado
mutate(date = parse_date_time(`Mês (Código)`, "ym")) %>%
select(Valor, date) %>%
filter(date > "2003-05-01")

ggplot(ipca, aes(x=as.Date(date), y=Valor, color=factor(year(date))))+geom_line(size=1.05)+
scale_color_manual(values = rep(c("#36879c", "#26ed6c"), times = 10)) +
scale_x_date(breaks = date_breaks("2 years"),
labels = date_format("%Y")) +
labs(x='', y='%', title = 'Variação mensal do IPCA',
caption = 'Fonte: SIDRA e Análise Macro') +
theme_light() +
theme(axis.text.x=element_text(angle=45, hjust=1),
legend.position = 'none',
strip.text = element_text(size=10, face='bold'))

Como podemos ver no gráfico, a inflação aparenta apresentar uma sazonalidade forte, sendo mais alta nos meses iniciais e finais do ano. Isso indica que parte de sua trajetória é descrita por equações predeterminadas, logo se quisermos analisar o impacto de outras variáveis sobre a inflação, precisamos extrair os componentes idiossincráticos de cada período, ou seja, o "ruído" que realmente pode ter sido impactado por tais variáveis. A extração pode ser feita com diversos métodos, como a função decompose() do R base. Vamos agora fazer ela com o seasonal:

library(seasonal)

ipcats <- ts(ipca$Valor, start = c(2003, 6), frequency = 12)

dessaz <- seas(ipcats, x11 = "")

plot(dessaz)

No código acima, importamos o pacote, transformamos os dados em série temporal, e rodamos a função seas() que faz o ajuste sazonal, utilizando o método X11. É possível converter quase toda especificação de código do X13-ARIMA-SEATS para o R, como apresentado na página de exemplos do site do pacote. Uma especificação interessante é o gráfico da sazonalidade estimada:

plot(dessaz$series$d10, xlab = "Sazonalidade", ylab="Ano", main = "Componente sazonal do IPCA")


Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

O que é Agentic RAG e o que o diferencia de RAG?

Neste post, explicamos o que é o Agentic RAG, como ele se diferencia do RAG tradicional e apresentamos um estudo de caso construído com base nas Atas do COPOM, mostrando passo a passo como criar um agente que busca, avalia, reescreve e responde perguntas sobre política monetária.

Como Criar um Agente de IA Econometrista

Criar um Agente de IA Econometrista envolve construir um sistema autônomo capaz de entender uma solicitação em linguagem natural, buscar dados econômicos, realizar análises e aplicar modelos econométricos para entregar uma resposta completa. A abordagem mais eficaz é estruturar o sistema em múltiplos agentes especializados, cada um com um papel definido, que colaboram para resolver a tarefa. Neste post abordamos o desenvolvimento deste sistema de IA com Python.

Como criar um Agente de IA analista de dados

Agentes de IA podem automatizar a coleta, tratamento e análise de indicadores econômicos, entregando insights prontos para a tomada de decisão. Combinando modelos de linguagem (LLM) avançados com ferramentas de acesso a dados, é possível construir soluções que buscam informações em tempo real e as processam de forma autônoma. Neste post mostramos uma visão geral sobre como isso tudo funciona.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.