Dicas de R: o pacote RDBnomics

No Dicas de R de hoje, vamos mostrar como utilizar o pacote rdbnomics, que conecta o R à base de dados do DBNomics. O carro-chefe do pacote é a função rdb(), que permite acessar dados diretamente, tanto com calls para a API da base como para o ID das séries de interesse. Além disso, a função permite a aplicação de filtros - de agregação e interpolação - automaticamente, facilitando análises.

O ID de cada série está disponível logo abaixo de seu nome, dentro da página do provedor no site do DBNomics, entre chaves. Abaixo, mostraremos como exemplo como baixar os dados de taxa de desemprego da Argentina, Austrália e Áustria, com os dados do FMI.

library(rdbnomics)

arg <- rdb("IMF/WEO:2020-10/ARG.LUR.pcent_total_labor_force")
australia <- rdb("IMF/WEO:2020-10/AUS.LUR.pcent_total_labor_force")
austria <- rdb("IMF/WEO:2020-10/AUT.LUR.pcent_total_labor_force")

Com isso, temos 3 dataframes com as séries de interesse. Vamos então tratar os dados com tidyverse e visualizá-los com ggplot2. Como as séries são padronizadas pelo FMI, não precisamos nos preocupar com fazer matching das datas e inner joins, logo a transformação fica simplificada. Os dados vão de 1980 a 2025, logo a parte final é uma estimação para o futuro da trajetória de desemprego dos 3 países.

library(tidyverse)
library(ggplot2)

dados <- tibble(Argentina = arg$value,
Austrália = australia$value,
Áustria = austria$value,
Ano = seq(1980, 2025, by = 1)) %>%
pivot_longer(-Ano, values_to = "Valor", names_to = "Variável")

dados %>% ggplot(aes(x=Ano, y = Valor, color = Variável))+geom_line(size = 1.1)+
labs(title = "Taxa de desemprego entre 1980 e 2025", y = "%", x = NULL,
caption = "Fonte: Análise Macro com dados do DBNomics")+
scale_x_continuous(breaks = seq(1980, 2025, by = 5), labels = seq(1980, 2025, by = 5))+
theme_minimal()+
theme(legend.title = element_blank(),
plot.caption.position = "plot")


_____________________

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como se comportou o endividamento e a inadimplência nos últimos anos? Uma análise utilizando a linguagem R

Neste exercício realizamos uma análise sobre a inadimplência dos brasileiros no período recente, utilizando a linguagem R para examinar dados públicos do Banco Central e do IBGE. Investigamos a evolução do endividamento, da inadimplência e das concessões de crédito, contextualizando-os com as dinâmicas da política monetária (Taxa Selic) e do mercado de trabalho (renda e desemprego).

Qual o hiato do produto no Brasil?

Entender o hiato do produto é fundamental para avaliar o ritmo da economia e as pressões inflacionárias no Brasil. Neste artigo, mostramos como estimar essa variável não observável a partir dos dados do PIB, explorando diferentes metodologias — de regressões simples a modelos estruturais — e discutindo as limitações e incertezas que cercam cada abordagem.

Determinantes do Preço do Ouro: VAR + Linguagem R

Este artigo realiza uma análise econométrica para investigar os determinantes dinâmicos do preço do ouro. Utilizando um modelo Vetorial Autorregressivo (VAR) em R, examinamos o impacto de variáveis como o dólar (DXY), a curva de juros e a incerteza global. Os resultados mostram que um fortalecimento inesperado do dólar tem um efeito negativo e significativo no curto prazo sobre os retornos do ouro, embora a maior parte de sua variância seja explicada por fatores intrínsecos ao seu próprio mercado.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.