Dicas de R: o pacote RDBnomics

No Dicas de R de hoje, vamos mostrar como utilizar o pacote rdbnomics, que conecta o R à base de dados do DBNomics. O carro-chefe do pacote é a função rdb(), que permite acessar dados diretamente, tanto com calls para a API da base como para o ID das séries de interesse. Além disso, a função permite a aplicação de filtros - de agregação e interpolação - automaticamente, facilitando análises.

O ID de cada série está disponível logo abaixo de seu nome, dentro da página do provedor no site do DBNomics, entre chaves. Abaixo, mostraremos como exemplo como baixar os dados de taxa de desemprego da Argentina, Austrália e Áustria, com os dados do FMI.

library(rdbnomics)

arg <- rdb("IMF/WEO:2020-10/ARG.LUR.pcent_total_labor_force")
australia <- rdb("IMF/WEO:2020-10/AUS.LUR.pcent_total_labor_force")
austria <- rdb("IMF/WEO:2020-10/AUT.LUR.pcent_total_labor_force")

Com isso, temos 3 dataframes com as séries de interesse. Vamos então tratar os dados com tidyverse e visualizá-los com ggplot2. Como as séries são padronizadas pelo FMI, não precisamos nos preocupar com fazer matching das datas e inner joins, logo a transformação fica simplificada. Os dados vão de 1980 a 2025, logo a parte final é uma estimação para o futuro da trajetória de desemprego dos 3 países.

library(tidyverse)
library(ggplot2)

dados <- tibble(Argentina = arg$value,
Austrália = australia$value,
Áustria = austria$value,
Ano = seq(1980, 2025, by = 1)) %>%
pivot_longer(-Ano, values_to = "Valor", names_to = "Variável")

dados %>% ggplot(aes(x=Ano, y = Valor, color = Variável))+geom_line(size = 1.1)+
labs(title = "Taxa de desemprego entre 1980 e 2025", y = "%", x = NULL,
caption = "Fonte: Análise Macro com dados do DBNomics")+
scale_x_continuous(breaks = seq(1980, 2025, by = 5), labels = seq(1980, 2025, by = 5))+
theme_minimal()+
theme(legend.title = element_blank(),
plot.caption.position = "plot")


_____________________

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Criando um dashboard das previsões do Relatório Focus

O Relatório Focus, divulgado semanalmente pelo Banco Central, reúne as expectativas do mercado para variáveis-chave da economia brasileira, como inflação, câmbio, PIB e Selic. Neste projeto, transformamos esses dados em um dashboard interativo para acompanhar a acurácia das previsões ao longo do tempo.

Como usar Modelos de Linguagem no R com o pacote {elmer}

Na análise de dados contemporânea, o uso de Modelos de Linguagem (LLMs) vem se consolidando como uma ferramenta poderosa para automatizar e aprimorar tarefas analíticas. Ao integrarmos LLMs a pacotes como o ellmer, podemos ampliar nossas capacidades de extração, interpretação e automação de dados no ambiente R. Neste post, exploramos o papel desses modelos e detalhamos como o ellmer opera dentro do universo da linguagem de programação R.

Introdução ao AutoGen: Agentes Inteligentes na Análise Financeira

O AutoGen é um framework da Microsoft que permite criar agentes de IA colaborativos. Na área financeira, pode automatizar a coleta de dados, cálculos de indicadores e geração de relatórios. Este artigo apresenta os conceitos básicos e um exemplo aplicado a ações de empresas.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.