Dicas de R: fazendo uma classificação KNN

No Dicas de R de hoje, vamos falar como funciona a classificação KNN (K nearest neighbours), aplicar o método em um exemplo, e visualizar o resultado a partir da amostra. O escopo de métodos como o KNN é de problemas de classificação. Ao invés de utilizar dados para prever resultados contínuos como em regressões lineares, são criadas regras de decisão para a classe esperada de uma observação. Ademais, tais classes podem ser utilizadas para a previsão de variáveis supostas contínuas, sendo um dos métodos mais simples de estimação não-paramétrica.

O desenvolvimento de métodos de classificação é baseado em distribuições condicionais. Considerando como melhor classificador aquele que minimiza o valor esperado da taxa de erros de teste (o número de classificações feitas erradas sobre o total, a partir da estimação de treino), podemos provar que a melhor regra de decisão é aquela que assinala a classe de maior probabilidade, dado os valores das variáveis de previsão. Essa regra é chama de classificador de Bayes, e depende do conhecimento completo das distribuições condicionais da variável a ser classificada, logo muitas vezes não é possível utilizá-lo.

Com isso, vamos explicar como funciona o classificador KNN. Após separarmos os dados entre treino e teste, definimos a seguinte regra: para uma observação das variáveis regressoras de teste, são identificados os K pontos de treino mais próximos à posição da amostra, e a probabilidade condicional de cada classe é a frequência relativa de sua ocorrência entre os pontos escolhidos. Desse modo, a classificação estimada para o ponto de teste é igual à classe que ocorre mais vezes dentre os K pontos de treino. A escolha do número K é importante: quanto menor for K, menor será a taxa de erro de treino (para K=1, a amostra será perfeitamente classificada), porém a classificação gerará padrões complicados e pode ter alta taxa de erro de teste, dependendo da amostra. Isso condiz com o tradeoff de viés-variância, de modo que, quanto menor o K, menor é o viés da classificação (pois está mais próxima dos dados reais), porém maior a variância da classificação entre amostras distintas, enquanto que, quanto maior o K, menor é o impacto de amostras diferentes de treino sobre o classificador final, abrindo mão de parte da acurácia do modelo.

Vamos então partir para um exemplo. Os dados utilizados serão do clássico dataset iris, contendo 4 dados de medição de flores, e suas respectivas espécies. Primeiramente, vamos utilizar a classificação KNN para tentar prever a espécie de cada flor a partir das medições de suas pétalas. Gerando os dados:

dados <- iris
class <- dados[,3:5]

train <- c(1:30, 51:80, 101:130)
class_train <- class[train,]
class_test <- class[-train,]

Então, podemos realizar a classificação utilizando a função knn(), do pacote class. Seus inputs são os dados de treino, teste, o número K e a classificação correta do treino. Abaixo, o modelo e sua previsão, comparada com os valores reais:


library(class)

pred = knn(train = class_train[,1:2], test = class_test[1:2], cl = class_train[,3], k = 4)

table(pred, class_test[,3])

pred setosa versicolor virginica
setosa 20 0 0
versicolor 0 20 1
virginica 0 0 19

Como podemos ver, o modelo acertou quase todas as classificações, com apenas um erro. Ele funcionou tão bem pois as variáveis se separam em grupos bem distintos, e, como o comprimento das pétalas se diferencia bastante entre as espécies - e possui escala maior, logo tem muito mais impacto na regra de decisão -, ele facilita a regra de decisão. Abaixo, vamos plotar o classificador para K=4, em conjunto com os pontos de teste. O código gera uma malha de pontos que cobrem o gráfico, e então faz a classificação KNN sobre cada um dos pontos da malha. Após isso, geramos um dataframe que indica os pontos onde o contorno deve ser de uma espécie, e onde não deve ser, para cada uma das 3 espécies, de modo a gerar 3 contornos que, por hipótese, não se sobrepõem. Com esse dataframe, podemos utilizar a geom_contour() do ggplot2, criando assim o gráfico abaixo:


library(ggplot2)
library(tidyverse)
library(MASS)

cover <- expand.grid(x=seq(min(class_train[,1]-1), max(class_train[,1]+1),
by=0.1),
y=seq(min(class_train[,2]-1), max(class_train[,2]+1),
by=0.1))

cover_class <- knn(train = class_train[,1:2], cover, cl = class_train[,3], k = 4)

dataf <- bind_rows(mutate(cover,
cls="setosa",
prob_cls=ifelse(cover_class==cls,
T, F)),
mutate(cover,
cls="versicolor",
prob_cls=ifelse(cover_class==cls,
T, F)),
mutate(cover,
cls="virginica",
prob_cls=ifelse(cover_class==cls,
T, F)))

ggplot(dataf) +
geom_point(aes(x=x, y=y, color=cls),
data = mutate(cover, cls=cover_class),
size=1.2) +
geom_contour(aes(x=x, y=y, z=prob_cls, group=cls, color=cls),
bins=2,
data=dataf) +
geom_point(aes(x=Petal.Length, y=Petal.Width, col=Species),
size=3,
data=class_test)+
labs(x='Petal Length',y = 'Petal Width', colour = 'Species')+
theme_minimal()

 

Conteúdos como esse podem ser encontrados no nosso Curso de Machine Learning usando o R.


Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Analisando o sentimento da política monetária com IA usando Python

Análise de sentimentos é uma técnica de Processamento de Linguagem Natural (PLN) que serve para revelar o sentimento contido em um texto. Neste exercício, aplicamos esta técnica para analisar as atas das reuniões do COPOM, revelando o que os diretores de política monetária discutem nas entrelinhas. Utilizando um modelo de Inteligência Artificial através do Python, produzimos ao final um índice de 0 a 100 para sintetizar a análise histórica.

Como a IA pode auxiliar na otimização de Portfólio de Investimentos?

A construção de portfólio ótimo refere-se ao processo de alocar eficientemente capital entre um conjunto predefinido de ativos ou títulos. O campo da construção de portfólio tem sido extensivamente estudado por acadêmicos e profissionais desde a década de 1950, quando Markowitz introduziu sua inovadora abordagem de média-variância para a construção de portfólio. Diante disso, podemos melhorar o processo de alocação de peso de um investimento em um portfólio através do Aprendizado não supervisionado com a aplicação do Hierarchical Risk Parity (HRP). Neste exercício, realizamos uma introdução ao método e mostramos os resultados de um exemplo criado através do Python.

Prevendo múltiplas séries usando IA no Python

Como podemos realizar previsões para várias séries temporais simultaneamente? Para abordar essa questão, empregamos a biblioteca MLForecastdo Python. Esta biblioteca disponibiliza uma variedade de modelos e funcionalidades para realizar previsões em séries temporais utilizando técnicas de aprendizado de máquina. Demonstramos sua aplicação ao prever as curvas de energia horária em quatro regiões distintas do Brasil.

Esse exercício é uma continuação do exercício “Usando IA para prever o consumo de energia no Brasil com Python”.

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.