Dicas de R: utilizando random forests

No Dicas de R de hoje, vamos apresentar métodos de árvore para a classificação e regressão de dados, e mostrar como utilizar random forests no R. Árvores nesse contexto são um conjunto de regras de decisão que se subdividem (como em galhos) para separar o espaço das variáveis regressoras em compartimentos que preveem um valor ou classe (as folhas). Nesse contexto, fica a dúvida: como podemos construir uma árvore de decisões?

Uma estratégia inicial pode ser iniciar em sua base (que, na notação utilizada, é o topo), onde temos basicamente a mesma previsão para todas as observações, e procurar qual regra para qualquer regressor leva à árvore que minimiza uma certa métrica, como o EQM. Dado esse passo, temos uma árvore com dois galhos, que divide o espaço em duas regiões. A partir daí, buscamos a próxima regra que minimiza a métrica (que pode gerar uma subdivisão em um dos galhos originais, ou gerar um terceiro galho a partir da base), e seguimos esse processo recursivamente. O método é simples, porém pode incorrer problemas de overfitting, e também apresentar grande variância na estimação.

Com isso, vamos verificar métodos de reduzir tal variância. A princípio, como só temos uma amostra, não podemos rodar várias vezes o modelo para combater a variância elevada, porém, podemos extrair subamostras aleatórias da amostra original e aplicar o modelo sob elas, método conhecido como bootstrapping. Para cada subamostra, podemos gerar uma árvore de decisão conforme descrito anteriormente, e então tomar a média das decisões para cada observação como decisão final.

O método acima é conhecido como bagging, e ele tem um problema: como sempre testa para todas as variáveis a regra de decisão que melhor diminui o erro, se uma variável possuir poder explanatório muito maior do que as outras, as árvores terão sempre galhos iniciais parecidos, logo a estimação é altamente correlacionada, diminuindo o poder do bootstrapping de reduzir a variância. Para resolver isso, introduzimos as random forests: além de tomar uma subamostra das observações originais, ao construir uma árvore de decisão, cada passo da árvore é feito utilizando apenas parte dos regressores como possíveis regra de decisão, escolhida aleatoriamente todas as vezes. Assim, em grande parte das árvores geradas, a variável de maior poder explanatório só será introduzida depois da primeira ramificação - em alguns casos, pode nunca aparecer -, fazendo com que as árvores sejam muito mais diversas sobre suas regras de decisão, tornando-as menos correlacionadas.

Vamos agora fazer um exemplo no R de random forests. Para isso, utilizaremos o dataset de preços medianos de casas Boston, do pacote MASS, e o pacote randomForest.

</pre>
library(randomForest)
library(MASS)

set.seed(1)

train = sample(1:nrow(Boston), nrow(Boston)/2)
boston.test = Boston[-train, "medv"]

rf.boston=randomForest(medv ~ . , data=Boston,
subset=train,
importance =TRUE)

varImpPlot(rf.boston)
<pre>

O resultado encontrado no plot acima é de que as variáveis que mais importam para a decisão são a riqueza da comunidade (lstat) e o tamanho das casas (rm).

Conteúdos como esse podem ser encontrados no nosso Curso de Machine Learning usando o R.

_____________________

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como otimizar um portfólio de investimentos no Python?

Este post apresenta, de forma prática e didática, como aplicar o modelo de otimização de carteiras de Markowitz utilizando Python. A partir de dados reais de ações brasileiras, mostramos como calcular retornos, medir riscos e encontrar a combinação ótima de ativos com base nas preferências de risco do investidor. Utilizamos a biblioteca Riskfolio-Lib para estruturar a análise e gerar gráficos como o conjunto de oportunidades e a fronteira eficiente.

O que são SLMs?

Assim como os LLMs, os Small Language Models (SLMs) são Modelos de Linguagem baseados em IA em versões mais compactas, projetados para funcionar com menos recursos computacionais, menor latência e maior privacidade. Neste exercício mostramos como usar estes modelos usando API's ou localmente através do Python.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.