Dicas de R: a modelagem de Support Vector Machines

No Dicas de R de hoje, seguindo nossa trajetória de modelos de machine learning, vamos introduzir support vector machines (SVMs). Essa metodologia é amplamente utilizada para a classificação de dados que possuem duas classes, porém pode ser expandida para dados com mais classes. Com isso, vamos apresentar a teoria por trás do SVM de modo simplificado, e mostrar como podemos utilizar esse modelo no R.

A ideia por trás do SVM em seu formato mais básico é utilizar a separabilidade das classes para criar um classificador. Para fazer isso, considerando os dados no espaço multi-dimensional das variáveis explicativas, buscamos criar um hiperplano (uma estrutura de menor dimensão que separa o espaço em dois) que prevê a classe de uma observação comparando o valor das variáveis explicativas (ou seja, a posição da observação no espaço) em relação a si. Como de modo geral é possível criar infinitos tais planos, o método básico (chamado de maximal margin classifier) encontra o plano que é mais distante das observações de treino. Com isso, podemos mostrar que esse método depende apenas dos pontos de cada classe que ficam mais próximos do hiperplano, que são chamados de support vectors.

Como apenas esses "pivôs" importam, a variância do método básico é bem alta. Com isso, para reduzir tal variância (e, por consequência, gerando algum viés), podemos permitir que algumas observações de treino fiquem a pouca distância do classificador, ou até mesmo fiquem no lado errado do hiperplano. Esse novo modelo é chamado de support vector classifier, e tem derivação parecida com o anterior, porém compartilha um problema com o primeiro: a dependência da separabilidade.

Pode ser o caso de que a separação entre as classes seja como uma parábola, ou, uma classe fique ao redor da outra no espaço. Nessas situações, um separador linear terá péssimos resultados, exigindo uma maior complexidade da especificação, onde entram então as SVMs. Não vamos entrar em toda a matemática por trás, mas de modo resumido, modelos SVM expandem o universo das variáveis explicativas para suas transformações, criando um hiperplano em volta não apenas das combinações lineares das variáveis em nível como também de funções delas.

Agora, vamos mostrar um exemplo no R de uma SVM. Para isso, utilizaremos o pacote e1071, que implementa diversas ferramentas estatísticas.


library(e1071)

x=matrix(rnorm(20*2), ncol = 2)
y=c(rep(-1,10), rep(1, 10))
x[y==1,] = x[y==1,] + 1
plot(x, col=(3-y))


Como podemos ver, os dados gerados não possuem a propriedade de separabilidade, logo o modelo simples não geraria um bom resultado. Abaixo, rodamos o modelo com um separador linear:


dat=data.frame(x=x, y=as.factor(y))

svmfit=svm(y ~ . , data=dat, kernel= "linear", cost=10,
scale=FALSE)

plot(svmfit, dat)

Para utilizarmos especificações diferentes, como polinomial e radial, basta modificar o argumento kernel, que define a "máquina" utilizada.

Conteúdos como esse podem ser encontrados no nosso Curso de Machine Learning usando o R.

_____________________

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Quais são as ferramentas de IA?

Um aspecto crucial dos Agentes de IA é a sua capacidade de tomar ações, que acontecem por meio do uso de Ferramentas (Tools). Neste artigo, vamos aprender o que são Tools, como defini-las de forma eficaz e como integrá-las ao seu Agente por meio da System Prompt. Ao fornecer as Tools certas para o seu Agente — e ao descrever claramente como essas Tools funcionam — você pode aumentar drasticamente o que sua IA é capaz de realizar.

Otimizando um Portfólio de Investimentos com Machine Learning

A construção de portfólio ótimo refere-se ao processo de alocar eficientemente capital entre um conjunto predefinido de ativos ou títulos. O campo da construção de portfólio tem sido extensivamente estudado por acadêmicos e profissionais desde a década de 1950, quando Markowitz introduziu sua inovadora abordagem de média-variância para a construção de portfólio. Diante disso, podemos melhorar o processo de alocação de peso de um investimento em um portfólio através do Aprendizado não supervisionado com a aplicação do Hierarchical Risk Parity (HRP). Neste exercício, realizamos uma introdução ao método e mostramos os resultados de um exemplo criado através do Python.

Como usar IA + Python para o Mercado Financeiro?

Neste post, mostramos como a Inteligência Artificial, aliada à linguagem Python, está revolucionando o mercado financeiro. Exploramos as principais áreas onde essa tecnologia pode ser aplicada — como gestão de carteiras, análise de demonstrações contábeis, estratégias quantitativas, trading e análise macroeconômica — com foco em aplicações práticas e exemplos voltados para o contexto brasileiro.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.