Dicas de R: alguns truques para melhorar seus gráficos

No Dicas de R de hoje, vamos apresentar algumas funções que podem melhorar a qualidade dos seus gráficos em ggplot, utilizando para nossas visualizações usando o clássico mtcars. Um gráfico comumente utilizado para a exploração de uma base é o seu histograma, como a seguir:


library(ggplot2)
library(tidyverse)

dados <- mtcars

dados %>% ggplot(aes(x=factor(cyl), y = mpg))+
geom_boxplot()+
labs(y='Milhas por Galão', x = 'Número de cilindros')+
theme_bw()

Porém, podemos utilizar uma alternativa que facilita a visualização da distribuição estimada dos valores, chamada de Kernel Density Estimation. Ela é parente do histograma, e permite uma visualização mais suavizada dos dados. Ademais, com o pacote ggridges, podemos fazer uma visualização semelhante à acima, exibindo os quartis estimados:


library(ggridges)

dados %>% ggplot(aes(x=mpg, y = factor(cyl),
fill = factor(stat(quantile))))+
labs(x='Milhas por Galão', y = 'Número de cilindros')+
scale_x_continuous(breaks = seq(10, 35, by = 5))+
stat_density_ridges(geom = "density_ridges_gradient",
quantile_lines = TRUE, alpha = 1,
rel_min_height = 0.01,
scale = 0.9,
size = 1)+
scale_fill_viridis_d(name = "Quartis")+
theme_minimal()

Agora, vamos adicionar à análise o peso dos carros. Para isso, o modo mais simples de visualizarmos os dados é o gráfico de dispersão:


dados %>% ggplot(aes(x=mpg, y=wt, color=factor(cyl), shape = factor(cyl)))+
geom_point(size = 3) +
labs(x='Milhas por Galão', y = 'Peso', color='Cilindros', shape='Cilindros')

A visualização é facilitada pela inclusão de tanto cores como formatos para cada tipo de variável, permitindo distinguir os pontos que estabelecem a relação descrita. Como podemos ver, a correlação negativa entre as variáveis é fortemente ditada pelos grupos que se definem pelo número de cilindros. Podemos facilitar a visualização da posição dos grupos adicionando elipses em torno de cada um:


dados %>% ggplot(aes(x=mpg, y=wt, color=factor(cyl), shape = factor(cyl)))+
geom_point(size = 3) +
labs(x='Milhas por Galão', y = 'Peso', color='Cilindros', shape='Cilindros')+
stat_ellipse(size=1.05)

 


Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Estamos em pleno emprego no mercado de trabalho?

Este artigo investiga se o mercado de trabalho brasileiro atingiu o nível de pleno emprego, utilizando uma estimativa da NAIRU (Non-Accelerating Inflation Rate of Unemployment) baseada na metodologia de Ball e Mankiw (1997). Através de uma modelagem em Python que unifica dados históricos da PME e PNAD Contínua com as expectativas do Boletim Focus, comparamos a taxa de desocupação corrente com a taxa neutra estrutural. A análise visual e quantitativa sugere o fechamento do hiato de desemprego, sinalizando potenciais pressões inflacionárias. O texto detalha o tratamento de dados, a aplicação do Filtro Hodrick-Prescott e discute as vantagens e limitações da metodologia econométrica adotada.

Como se comportou a Taxa de Participação no Brasil nos últimos anos? Uma Análise com a Linguagem R

O objetivo deste estudo é analisar a evolução da Taxa de Participação no Brasil, contrastando-a com a Taxa de Desocupação e decompondo suas variações para entender os vetores (populacionais e de força de trabalho) que influenciam o comportamento atual do mercado de trabalho. Para isso, utilizamos a linguagem R em todo o processo, desde a coleta e o tratamento das informações até a visualização dos resultados, empregando os principais pacotes disponíveis no ecossistema da linguagem.

Como se comportou a inflação de serviços no Brasil nos últimos anos?

Uma análise econométrica da inflação de serviços no Brasil comparando os cenários de 2014 e 2025. Utilizando uma Curva de Phillips própria e estimativas da NAIRU via filtro HP, investigamos se o atual desemprego nas mínimas históricas repete os riscos do passado. Entenda como as expectativas de inflação e o hiato do desemprego explicam o comportamento mais benigno dos preços atuais em relação à década anterior.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.