Dicas de R: alguns truques para melhorar seus gráficos

No Dicas de R de hoje, vamos apresentar algumas funções que podem melhorar a qualidade dos seus gráficos em ggplot, utilizando para nossas visualizações usando o clássico mtcars. Um gráfico comumente utilizado para a exploração de uma base é o seu histograma, como a seguir:


library(ggplot2)
library(tidyverse)

dados <- mtcars

dados %>% ggplot(aes(x=factor(cyl), y = mpg))+
geom_boxplot()+
labs(y='Milhas por Galão', x = 'Número de cilindros')+
theme_bw()

Porém, podemos utilizar uma alternativa que facilita a visualização da distribuição estimada dos valores, chamada de Kernel Density Estimation. Ela é parente do histograma, e permite uma visualização mais suavizada dos dados. Ademais, com o pacote ggridges, podemos fazer uma visualização semelhante à acima, exibindo os quartis estimados:


library(ggridges)

dados %>% ggplot(aes(x=mpg, y = factor(cyl),
fill = factor(stat(quantile))))+
labs(x='Milhas por Galão', y = 'Número de cilindros')+
scale_x_continuous(breaks = seq(10, 35, by = 5))+
stat_density_ridges(geom = "density_ridges_gradient",
quantile_lines = TRUE, alpha = 1,
rel_min_height = 0.01,
scale = 0.9,
size = 1)+
scale_fill_viridis_d(name = "Quartis")+
theme_minimal()

Agora, vamos adicionar à análise o peso dos carros. Para isso, o modo mais simples de visualizarmos os dados é o gráfico de dispersão:


dados %>% ggplot(aes(x=mpg, y=wt, color=factor(cyl), shape = factor(cyl)))+
geom_point(size = 3) +
labs(x='Milhas por Galão', y = 'Peso', color='Cilindros', shape='Cilindros')

A visualização é facilitada pela inclusão de tanto cores como formatos para cada tipo de variável, permitindo distinguir os pontos que estabelecem a relação descrita. Como podemos ver, a correlação negativa entre as variáveis é fortemente ditada pelos grupos que se definem pelo número de cilindros. Podemos facilitar a visualização da posição dos grupos adicionando elipses em torno de cada um:


dados %>% ggplot(aes(x=mpg, y=wt, color=factor(cyl), shape = factor(cyl)))+
geom_point(size = 3) +
labs(x='Milhas por Galão', y = 'Peso', color='Cilindros', shape='Cilindros')+
stat_ellipse(size=1.05)

 


Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

O que é Agentic RAG e o que o diferencia de RAG?

Neste post, explicamos o que é o Agentic RAG, como ele se diferencia do RAG tradicional e apresentamos um estudo de caso construído com base nas Atas do COPOM, mostrando passo a passo como criar um agente que busca, avalia, reescreve e responde perguntas sobre política monetária.

Como Criar um Agente de IA Econometrista

Criar um Agente de IA Econometrista envolve construir um sistema autônomo capaz de entender uma solicitação em linguagem natural, buscar dados econômicos, realizar análises e aplicar modelos econométricos para entregar uma resposta completa. A abordagem mais eficaz é estruturar o sistema em múltiplos agentes especializados, cada um com um papel definido, que colaboram para resolver a tarefa. Neste post abordamos o desenvolvimento deste sistema de IA com Python.

Como criar um Agente de IA analista de dados

Agentes de IA podem automatizar a coleta, tratamento e análise de indicadores econômicos, entregando insights prontos para a tomada de decisão. Combinando modelos de linguagem (LLM) avançados com ferramentas de acesso a dados, é possível construir soluções que buscam informações em tempo real e as processam de forma autônoma. Neste post mostramos uma visão geral sobre como isso tudo funciona.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.