Dicas de R

Dicas de R: alguns truques para melhorar seus gráficos

By 21 de abril de 2021 No Comments

No Dicas de R de hoje, vamos apresentar algumas funções que podem melhorar a qualidade dos seus gráficos em ggplot, utilizando para nossas visualizações usando o clássico mtcars. Um gráfico comumente utilizado para a exploração de uma base é o seu histograma, como a seguir:


library(ggplot2)
library(tidyverse)

dados <- mtcars

dados %>% ggplot(aes(x=factor(cyl), y = mpg))+
geom_boxplot()+
labs(y='Milhas por Galão', x = 'Número de cilindros')+
theme_bw()

Porém, podemos utilizar uma alternativa que facilita a visualização da distribuição estimada dos valores, chamada de Kernel Density Estimation. Ela é parente do histograma, e permite uma visualização mais suavizada dos dados. Ademais, com o pacote ggridges, podemos fazer uma visualização semelhante à acima, exibindo os quartis estimados:


library(ggridges)

dados %>% ggplot(aes(x=mpg, y = factor(cyl),
fill = factor(stat(quantile))))+
labs(x='Milhas por Galão', y = 'Número de cilindros')+
scale_x_continuous(breaks = seq(10, 35, by = 5))+
stat_density_ridges(geom = "density_ridges_gradient",
quantile_lines = TRUE, alpha = 1,
rel_min_height = 0.01,
scale = 0.9,
size = 1)+
scale_fill_viridis_d(name = "Quartis")+
theme_minimal()

Agora, vamos adicionar à análise o peso dos carros. Para isso, o modo mais simples de visualizarmos os dados é o gráfico de dispersão:


dados %>% ggplot(aes(x=mpg, y=wt, color=factor(cyl), shape = factor(cyl)))+
geom_point(size = 3) +
labs(x='Milhas por Galão', y = 'Peso', color='Cilindros', shape='Cilindros')

A visualização é facilitada pela inclusão de tanto cores como formatos para cada tipo de variável, permitindo distinguir os pontos que estabelecem a relação descrita. Como podemos ver, a correlação negativa entre as variáveis é fortemente ditada pelos grupos que se definem pelo número de cilindros. Podemos facilitar a visualização da posição dos grupos adicionando elipses em torno de cada um:


dados %>% ggplot(aes(x=mpg, y=wt, color=factor(cyl), shape = factor(cyl)))+
geom_point(size = 3) +
labs(x='Milhas por Galão', y = 'Peso', color='Cilindros', shape='Cilindros')+
stat_ellipse(size=1.05)

 


Seja avisado da nossa próxima aula ao vivo de R para Análise de Dados, toda terça-feira, às 21h!

Quero ser avisado
{"cart_token":"","hash":"","cart_data":""}