Hackeando o R: calculando o carry-over estatístico de uma variável

No Hackeando o R de hoje, vamos mostrar como fazer a visualização do carry-over estatístico de uma série temporal. Essa estatística pode ser uma importante ferramenta para a análise de agregações de dados ao longo do tempo pois facilita identificar a variação que ocorreu apenas no período corrente, extraindo a variação que é apenas resíduo do período anterior, chamada de carry-over. Abaixo, visualizamos os dois efeitos teóricos com uma simulação de dados

library(RcppRoll)
library(ggplot2)

set.seed(1)
x = data.frame(valor = (1:100) + rnorm(100), t = 1:100)

ggplot(x[49:72,], aes(x = t, y = valor))+geom_bar(stat = 'identity') +
coord_cartesian(ylim = c(45, 73))+
geom_segment(aes(x=49, xend=60, y = 54.68361, yend=54.68361), size = 1.2)+
geom_label(aes(x=49, y=54.68361, label = 'A'))+
geom_segment(aes(x=61, xend=72, y = 59.86495, yend=59.86495), size = 1.2)+
geom_label(aes(x=61, y=59.86495, label = 'B'))+
geom_segment(aes(x=61, xend=72, y = 66.85647, yend=66.85647), size = 1.2)+
geom_label(aes(x=61, y=66.85647, label = 'C'))+
labs(x='', y = '')+
theme_bw()

No exemplo acima, A é a média do ano anterior, C a média do ano corrente, e B é o valor da última observação do ano anterior, repetido para o ano corrente, ou seja, a média do ano corrente caso não houvesse crescimento. Ao compararmos a variação interanual dos dois períodos, podemos decompor esse valor em duas partes: a variação percentual de A a B, chamada de carry-over, e a variação percentual de B a C (mensurada no nível de A), que é o crescimento que ocorreu apenas a partir da última observação do ano anterior. A função abaixo calcula tais valores para uma variável mensal qualquer:


calcula_carry_over_anual <- function(data) {
A <- dplyr::lag(RcppRoll::roll_meanr(data, n=12), n=12)
B <- dplyr::lag(data, n = 12)
C <- RcppRoll::roll_meanr(data, n=12)

carry_over <- (B-A)/A
cresc_real_do_periodo <- (C-B)/A

lista = data.frame(carry_over, cresc_real_do_periodo, carry_over+cresc_real_do_periodo)
return(lista)
}

 

Então, vamos fazer a decomposição da série de nível do IBC como exemplo:

library(BETS)
library(tidyverse)
library(ggplot2)
library(scales)

ibc = BETSget(24363, data.frame=TRUE)

tibble(ibc$date, calcula_carry_over_anual((ibc$value))*100) %>%
magrittr::set_colnames(c('date', 'carry_over', 'cresc_real', 'soma')) %>%
pivot_longer(-date, names_to = 'var', values_to = 'val') %>%
filter(date>as.Date('2018-01-01') & var != 'soma') %>%
mutate(idk = RcppRoll::roll_sumr(val, n=2),
idk = ifelse(rep(c(FALSE, TRUE), times = 39), idk, NA)) %>%
ggplot(aes(x=date, y = val, fill = var))+geom_bar(stat = 'identity')+
scale_x_date(breaks = date_breaks('3 months'),
labels = date_format("%b/%Y"))+
scale_fill_manual(labels = c('Carry over', 'Crescimento real'), values = c('#244747', '#9ae5de'))+
geom_line(aes(x=date,y=idk, color = 'Agregado'), size= 1.2, linetype='solid')+
scale_color_manual(values = c('Agregado' = '#e89835'))+
geom_hline(yintercept=0, colour='black', linetype='dashed')+
labs(title='Decomposição da variação do nível do IBC', y = '%',
caption='Fonte: IBGE')+
theme(panel.background = element_rect(colour = 'white', fill='white'),
legend.position = 'right',
strip.text = element_text(size=8, face='bold'),
axis.text.x = element_text(angle = 45, hjust=1),
plot.title = element_text(size=10, face='bold'),
legend.title = element_blank(),
plot.caption.position = 'plot',
axis.title.x = element_blank())

________________________

(*) Para entender mais sobre séries temporais e como realizar cálculos estatísticos, confira nosso Curso de Análise de Séries Temporais.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como planejar um pipeline de previsão macroeconômica: da coleta ao dashboard

Montar um pipeline de previsão macroeconômica não é apenas uma tarefa técnica — é um exercício de integração entre dados, modelos e automação. Neste post, apresento uma visão geral de como estruturar esse processo de ponta a ponta, da coleta de dados até a construção de um dashboard interativo, que exibe previsões automatizadas de inflação, câmbio, PIB e taxa Selic.

Coletando e integrando dados do BCB, IBGE e IPEA de forma automatizada

Quem trabalha com modelagem e previsão macroeconômica sabe o quanto é demorado reunir dados de diferentes fontes — Banco Central, IBGE, IPEA, FRED, IFI... Cada um com sua API, formato, frequência e estrutura. Esse gargalo de coleta e padronização consome tempo que poderia estar sendo usado na análise, nos modelos ou na comunicação dos resultados.

Foi exatamente por isso que criamos uma rotina de coleta automatizada, que busca, trata e organiza séries temporais econômicas diretamente das APIs oficiais, pronta para ser integrada a pipelines de previsão, dashboards ou agentes de IA econometristas.

Criando operações SQL com IA Generativa no R com querychat

No universo da análise de dados, a velocidade para obter respostas é um diferencial competitivo. Frequentemente, uma simples pergunta de negócio — “Qual foi nosso produto mais vendido no último trimestre na região Nordeste?” — inicia um processo que envolve abrir o RStudio, escrever código dplyr ou SQL, executar e, finalmente, obter a resposta. E se pudéssemos simplesmente perguntar isso aos nossos dados em português, diretamente no nosso dashboard Shiny?

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.