Hackeando o R: visualizando o efeito de variáveis em um modelo linear

No Hackeando o R de hoje, vamos mostrar como fazer a visualização do impacto das variáveis de um modelo linear com o pacote Effects. Esse tipo de visualização é interessante para facilitar a comunicação de resultados estatísticos, garantindo a interpretação correta de seus modelos. Vamos iniciar nosso exemplo gerando um modelo linear usual:

library(car)

Prestige$type = factor(Prestige$type, levels=c("bc", "wc", "prof"))
lm1 = lm(prestige ~ education + poly(women, 2) +
log(income)*type, data=Prestige)

summary(lm1)

lm(formula = prestige ~ education + poly(women, 2) + log(income) * 
type, data = Prestige)

Residuals:
Min 1Q Median 3Q Max 
-12.1070 -3.8277 0.2736 3.8382 16.4393

Coefficients:
Estimate Std. Error t value Pr(> |t|) 
(Intercept) -137.5002 23.5219 -5.846 8.18e-08 ***
education 2.9588 0.5817 5.087 2.01e-06 ***
poly(women, 2)1 28.3395 10.1900 2.781 0.00661 ** 
poly(women, 2)2 12.5663 7.0954 1.771 0.07998 . 
log(income) 17.5135 2.9159 6.006 4.06e-08 ***
typewc 0.9695 39.4947 0.025 0.98047 
typeprof 74.2759 30.7357 2.417 0.01771 * 
log(income):typewc -0.4661 4.6200 -0.101 0.91986 
log(income):typeprof -7.6977 3.4512 -2.230 0.02823 * 
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 6.199 on 89 degrees of freedom
(4 observations deleted due to missingness)
Multiple R-squared: 0.8793, Adjusted R-squared: 0.8685 
F-statistic: 81.08 on 8 and 89 DF, p-value: < 2.2e-16

Dentre os regressores do modelo, apenas education possui uma interpretação direta, de que uma unidade adicional aumenta o valor de prestige em 2.95. Para as outras variáveis, temos efeitos que variam de magnitude, como no caso de women, e transformações de escala misturadas com interações, fazendo com que a compreensão do modelo não seja muito intuitiva. Para resolver isso, vamos utilizar a função plot() do pacote effects, que permite visualizar o efeito de uma das variáveis. Abaixo, o efeito de education:

library(effects)

e1.lm1 = predictorEffect("education", lm1)

plot(e1.lm1)

O gráfico gerado apresenta uma reta cuja angulação é o coeficiente do regressor no modelo, e o valor da função de efeito é prestige em função de education, com os outros regressores fixos em valores padrões, como a média deles, sendo assim o efeito parcial de education. A banda desenhada é o intervalo de confiança para a estimação desse valor, se baseando na matriz de covariâncias dos regressores da amostra. Para um parâmetro simples, não há grandes ganhos sobre a interpretação, porém no caso da variável income, que entra no modelo em logaritmo e tem interação com dummies, o efeito é mais complicado, e o gráfico se torna mais interessante:

plot(predictorEffect("income", lm1),
lines=list(multiline=TRUE))

 

No caso da própria variável type, que é categórica, o efeito depende da categoria, e do valor de income. Para entendermos como funciona o modelo em níveis distintos de income, são gerados pontos para os 5 principais quantis:

plot(predictorEffect("type", lm1, xlevels = 5), lines=list(multiline=TRUE))

 

 

________________________
(*) Para entender mais sobre modelagem e estatística, confira nossos Cursos de Econometria e Machine Learning.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

O que é Agentic RAG e o que o diferencia de RAG?

Neste post, explicamos o que é o Agentic RAG, como ele se diferencia do RAG tradicional e apresentamos um estudo de caso construído com base nas Atas do COPOM, mostrando passo a passo como criar um agente que busca, avalia, reescreve e responde perguntas sobre política monetária.

Como Criar um Agente de IA Econometrista

Criar um Agente de IA Econometrista envolve construir um sistema autônomo capaz de entender uma solicitação em linguagem natural, buscar dados econômicos, realizar análises e aplicar modelos econométricos para entregar uma resposta completa. A abordagem mais eficaz é estruturar o sistema em múltiplos agentes especializados, cada um com um papel definido, que colaboram para resolver a tarefa. Neste post abordamos o desenvolvimento deste sistema de IA com Python.

Como criar um Agente de IA analista de dados

Agentes de IA podem automatizar a coleta, tratamento e análise de indicadores econômicos, entregando insights prontos para a tomada de decisão. Combinando modelos de linguagem (LLM) avançados com ferramentas de acesso a dados, é possível construir soluções que buscam informações em tempo real e as processam de forma autônoma. Neste post mostramos uma visão geral sobre como isso tudo funciona.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.