Hackeando o R: visualizando o efeito de variáveis em um modelo linear

No Hackeando o R de hoje, vamos mostrar como fazer a visualização do impacto das variáveis de um modelo linear com o pacote Effects. Esse tipo de visualização é interessante para facilitar a comunicação de resultados estatísticos, garantindo a interpretação correta de seus modelos. Vamos iniciar nosso exemplo gerando um modelo linear usual:

library(car)

Prestige$type = factor(Prestige$type, levels=c("bc", "wc", "prof"))
lm1 = lm(prestige ~ education + poly(women, 2) +
log(income)*type, data=Prestige)

summary(lm1)

lm(formula = prestige ~ education + poly(women, 2) + log(income) * 
type, data = Prestige)

Residuals:
Min 1Q Median 3Q Max 
-12.1070 -3.8277 0.2736 3.8382 16.4393

Coefficients:
Estimate Std. Error t value Pr(> |t|) 
(Intercept) -137.5002 23.5219 -5.846 8.18e-08 ***
education 2.9588 0.5817 5.087 2.01e-06 ***
poly(women, 2)1 28.3395 10.1900 2.781 0.00661 ** 
poly(women, 2)2 12.5663 7.0954 1.771 0.07998 . 
log(income) 17.5135 2.9159 6.006 4.06e-08 ***
typewc 0.9695 39.4947 0.025 0.98047 
typeprof 74.2759 30.7357 2.417 0.01771 * 
log(income):typewc -0.4661 4.6200 -0.101 0.91986 
log(income):typeprof -7.6977 3.4512 -2.230 0.02823 * 
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 6.199 on 89 degrees of freedom
(4 observations deleted due to missingness)
Multiple R-squared: 0.8793, Adjusted R-squared: 0.8685 
F-statistic: 81.08 on 8 and 89 DF, p-value: < 2.2e-16

Dentre os regressores do modelo, apenas education possui uma interpretação direta, de que uma unidade adicional aumenta o valor de prestige em 2.95. Para as outras variáveis, temos efeitos que variam de magnitude, como no caso de women, e transformações de escala misturadas com interações, fazendo com que a compreensão do modelo não seja muito intuitiva. Para resolver isso, vamos utilizar a função plot() do pacote effects, que permite visualizar o efeito de uma das variáveis. Abaixo, o efeito de education:

library(effects)

e1.lm1 = predictorEffect("education", lm1)

plot(e1.lm1)

O gráfico gerado apresenta uma reta cuja angulação é o coeficiente do regressor no modelo, e o valor da função de efeito é prestige em função de education, com os outros regressores fixos em valores padrões, como a média deles, sendo assim o efeito parcial de education. A banda desenhada é o intervalo de confiança para a estimação desse valor, se baseando na matriz de covariâncias dos regressores da amostra. Para um parâmetro simples, não há grandes ganhos sobre a interpretação, porém no caso da variável income, que entra no modelo em logaritmo e tem interação com dummies, o efeito é mais complicado, e o gráfico se torna mais interessante:

plot(predictorEffect("income", lm1),
lines=list(multiline=TRUE))

 

No caso da própria variável type, que é categórica, o efeito depende da categoria, e do valor de income. Para entendermos como funciona o modelo em níveis distintos de income, são gerados pontos para os 5 principais quantis:

plot(predictorEffect("type", lm1, xlevels = 5), lines=list(multiline=TRUE))

 

 

________________________
(*) Para entender mais sobre modelagem e estatística, confira nossos Cursos de Econometria e Machine Learning.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como planejar um pipeline de previsão macroeconômica: da coleta ao dashboard

Montar um pipeline de previsão macroeconômica não é apenas uma tarefa técnica — é um exercício de integração entre dados, modelos e automação. Neste post, apresento uma visão geral de como estruturar esse processo de ponta a ponta, da coleta de dados até a construção de um dashboard interativo, que exibe previsões automatizadas de inflação, câmbio, PIB e taxa Selic.

Coletando e integrando dados do BCB, IBGE e IPEA de forma automatizada

Quem trabalha com modelagem e previsão macroeconômica sabe o quanto é demorado reunir dados de diferentes fontes — Banco Central, IBGE, IPEA, FRED, IFI... Cada um com sua API, formato, frequência e estrutura. Esse gargalo de coleta e padronização consome tempo que poderia estar sendo usado na análise, nos modelos ou na comunicação dos resultados.

Foi exatamente por isso que criamos uma rotina de coleta automatizada, que busca, trata e organiza séries temporais econômicas diretamente das APIs oficiais, pronta para ser integrada a pipelines de previsão, dashboards ou agentes de IA econometristas.

Criando operações SQL com IA Generativa no R com querychat

No universo da análise de dados, a velocidade para obter respostas é um diferencial competitivo. Frequentemente, uma simples pergunta de negócio — “Qual foi nosso produto mais vendido no último trimestre na região Nordeste?” — inicia um processo que envolve abrir o RStudio, escrever código dplyr ou SQL, executar e, finalmente, obter a resposta. E se pudéssemos simplesmente perguntar isso aos nossos dados em português, diretamente no nosso dashboard Shiny?

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.