Hackeando o R: gerando gráficos de modo interativo com o esquisse

No Hackeando o R de hoje, vamos apresentar o pacote esquisse, que facilita a geração de gráficos interativos no R. A principal funcionalidade do pacote é o add-in que ele adiciona ao R, que permite gerar gráficos de modo intuitivo e sem olhar diretamente para o código, sendo uma boa ferramenta para trabalhos rápidos. Após instalar o pacote, podemos acessar suas ferramentas no RStudio:

Vamos então carregar alguns dados para trabalhar dentro da ferramenta. Para o exemplo, utilizaremos 4 das principais variáveis reportadas pelo Boletim FOCUS.

library(rbcb)
library(tidyverse)

dados = get_annual_market_expectations(c('PIB Total', 'IPCA', 
'Taxa de câmbio', 
'Meta para taxa over-selic'
),
start_date = '2019-01-01') %>%
replace_na(replace = list(indic_detail = 'Média'))

dados$indic = ifelse(dados$indic == 'Taxa de câmbio', 'Taxa de Câmbio', 
dados$indic)

dados = dados %>% filter(reference_year == '2021' & base == 0 & 
indic_detail %in% c('Média', 'Fim do ano') & 
indic %in% c('IPCA', 'Meta para taxa over-selic',
'PIB Total', 'Taxa de Câmbio') & 
date > '2020-06-01')

Ao abrir o add-in, iremos selecionar os dados a serem utilizados:

Dentro da ferramenta, teremos então todas as colunas do dataframe, e diversas opções do ggplot2. Abaixo, colocamos a data no eixo x, a expectativa média no eixo y, e separamos os dados pela variável. É importante notar que os dados já foram transformados no formato tall, como fazemos em gráficos de múltiplas linhas normalmente.

Podemos personalizar diversas configurações, como adicionar título, mudar coordenadas, e alterar o layout. Após isso, podemos salvar o gráfico localmente. Outra opção é salvá-lo diretamente em um slide de PowerPoint. Isso pode ser feito tanto diretamente no add-in, como para objetos do tipo ggplot que você já possui localmente.



Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como planejar um pipeline de previsão macroeconômica: da coleta ao dashboard

Montar um pipeline de previsão macroeconômica não é apenas uma tarefa técnica — é um exercício de integração entre dados, modelos e automação. Neste post, apresento uma visão geral de como estruturar esse processo de ponta a ponta, da coleta de dados até a construção de um dashboard interativo, que exibe previsões automatizadas de inflação, câmbio, PIB e taxa Selic.

Coletando e integrando dados do BCB, IBGE e IPEA de forma automatizada

Quem trabalha com modelagem e previsão macroeconômica sabe o quanto é demorado reunir dados de diferentes fontes — Banco Central, IBGE, IPEA, FRED, IFI... Cada um com sua API, formato, frequência e estrutura. Esse gargalo de coleta e padronização consome tempo que poderia estar sendo usado na análise, nos modelos ou na comunicação dos resultados.

Foi exatamente por isso que criamos uma rotina de coleta automatizada, que busca, trata e organiza séries temporais econômicas diretamente das APIs oficiais, pronta para ser integrada a pipelines de previsão, dashboards ou agentes de IA econometristas.

Criando operações SQL com IA Generativa no R com querychat

No universo da análise de dados, a velocidade para obter respostas é um diferencial competitivo. Frequentemente, uma simples pergunta de negócio — “Qual foi nosso produto mais vendido no último trimestre na região Nordeste?” — inicia um processo que envolve abrir o RStudio, escrever código dplyr ou SQL, executar e, finalmente, obter a resposta. E se pudéssemos simplesmente perguntar isso aos nossos dados em português, diretamente no nosso dashboard Shiny?

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.