Hackeando o R: MCMC - algoritmo de Metropolis

No Hackeando o R de hoje, vamos apresentar o método de MCMC, ferramenta de grande importância para a estimação dentro da estatística bayesiana. O exemplo que apresentamos na semana passada era de fácil computação (como pode ser visto pelos códigos utilizados), muito por causa do fato de que a equação encontrada possuía solução fechada. Quando possuímos poucos parâmetros para estimar, e o espaço de possibilidades dos parâmetros é pequeno, também podemos resolver 'manualmente' calculando as probabilidades, pois é questão de percorrer cada uma das possibilidades e encontrar o valor do Teorema de Bayes. Para problemas mais complexos, como os que encontramos na vida real, essas soluções fáceis muitas vezes não estão disponíveis. Pense no caso de uma probabilidade condicional sem fórmula fechada, para a estimação de 6 parâmetros, que podem assumir 1000 valores cada um. Estaríamos olhando para o cálculo de 1000^6 combinações, o que é pesado até para computadores modernos.

A solução para esse problema é o chamado MCMC (Monte-Carlo Markov Chain). Apesar dele ser mais utilizado em problemas com múltiplos parâmetros, vamos mostrar como ele funciona com apenas um, para facilitar a compreensão. O ponto importante do método é que ele só depende da estimação dos termos no numerador do Teorema de Bayes (mostrado abaixo), eliminando qualquer preocupação com a integral do denominador, que é o grande problema para encontrarmos soluções fechadas.

A ideia básica do MCMC é gerar uma estimativa da distribuição a posteriori a partir de amostras dela, sem que nós precisemos construir ela per se. Hoje, vamos mostrar o algoritmo de Metropolis, que gera uma aproximação da distribuição a posteriori através de regras de decisão simples. O algoritmo utiliza apenas a razão entre duas probabilidades a posteriori, logo há estimação da integral acaba sendo desnecessária. Dada uma posição inicial para os parâmetros, os passos do algoritmo são simples:

1: geramos um movimento aleatório dos parâmetros no seu espaço, que será testado;
2: Verificamos se a posteriori na nova posição tem valor maior que na original. Se sim, o movimento ocorre. Caso contrário, o movimento ocorrerá com probabilidade igual à razão entre as posterioris;
3: geramos uma observação uniforme de 0 a 1, e comparamos ela com a razão calculada, de modo a validar o movimento acima.

Com isso, vamos testar o algoritmo para uma distribuição de eventos Bernoulli. Sabemos que essa distribuição possui fórmula fechada, logo iremos utilizá-la para comparar com a distribuição 'aproximada' encontrada de modo empírico.

dados = c(rep(0,6),rep(1,14))

probParcial = function(theta, data){

z = sum(data)
N = length(data)
p_Xi_dado_Theta = theta^z * (1-theta)^(N-z)
p_Xi_dado_Theta[theta > 1 | theta < 0] = 0

pTheta = dbeta(theta , 1, 1)
pTheta[theta > 1 | theta < 0] = 0

parcial = p_Xi_dado_Theta * pTheta
return(parcial)
}

n = 50000
trajetoria = rep(0, n)
trajetoria[1] = 0.5

set.seed(12334)

for ( t in 1:(n-1) ) {
posicao = trajetoria[t]

choque = rnorm(1, mean = 0, sd = 0.2)

probabilidade = min(1,
probParcial(posicao + choque, dados)
/ probParcial(posicao, dados))

if ( runif(1) < probabilidade ) {

trajetoria[t+1] = posicao + choque

} else {

trajetoria[t+1] = posicao

}
}

df = data.frame(passo = 1:50000, valor = trajetoria)

library(ggplot2)

ggplot(df, aes(x=valor)) + geom_histogram(aes(y = stat(density))) +
stat_function(fun = function(x) dbeta(x, 15, 7), color = "red",
size = 1)

________________________
(*) Para entender mais sobre análises estatísticas, confira nosso Curso de Estatística Bayesiana usando o R.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Qual o hiato do produto no Brasil?

Entender o hiato do produto é fundamental para avaliar o ritmo da economia e as pressões inflacionárias no Brasil. Neste artigo, mostramos como estimar essa variável não observável a partir dos dados do PIB, explorando diferentes metodologias — de regressões simples a modelos estruturais — e discutindo as limitações e incertezas que cercam cada abordagem.

Determinantes do Preço do Ouro: VAR + Linguagem R

Este artigo realiza uma análise econométrica para investigar os determinantes dinâmicos do preço do ouro. Utilizando um modelo Vetorial Autorregressivo (VAR) em R, examinamos o impacto de variáveis como o dólar (DXY), a curva de juros e a incerteza global. Os resultados mostram que um fortalecimento inesperado do dólar tem um efeito negativo e significativo no curto prazo sobre os retornos do ouro, embora a maior parte de sua variância seja explicada por fatores intrínsecos ao seu próprio mercado.

Existe correlação entre vagas de emprego e o S&P 500?

O que explica a divergência entre S&P 500 e vagas de emprego? Seria o impacto da IA ou a política monetária? Utilizando um análise dados e modelo VAR e testes de causalidade de Granger usando a linguagem de programação R, investigamos a relação e o motivo por trás da "boca de jacaré".

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.