Hackeando o R: visualizando atributos em mapas no R

No Hackeando o R de hoje, vamos mostrar como fazer a visualização de dados distribuídos em uma malha (como um mapa) dentro do R. Para isso, iremos introduzir funcionalidades básicas do pacote terra, e conectar seus resultados ao ggplot2 usando o pacote rasterVis.

Iremos utilizar duas fontes de dados para o exercício: o mapa de UFs do Brasil disponível no NEREUS, e a imagem de distribuição da agricultura ao redor do mundo em 2010, classificada por principais produtos e a predominância de irrigação/chuvas como fonte de água. Tais dados são de classes diferentes: o mapa, que está em formato shapefile (.shp), é uma coleção de vetores que descreve características do mundo real, como no caso a divisão entre os estados; por outro lado, a imagem é uma malha de pixels que percorre o mundo inteiro, e possui uma codificação para cada pixel, indicando qual seria o atributo em cada posição do mapa global. Os dados em malha são chamados de rasterizados, e no nosso caso estão disponíveis em um arquivo TIFF (.tif).

Para abrirmos esses dados, vamos carregá-los com o terra. Para abrir dados vetorizados, utilizamos a função vect(), enquanto que dados rasterizados utilizam a função rast. Abaixo, abrimos cada um e plotamos seus resultados:

library(terra)

munip = vect('estados/UFEBRASIL.shp')
irrig = rast('dados_irrigacao_GFSAD1KCD.tif')

plot(munip)


plot(irrig)

Agora, digamos que queremos apenas analisar os dados do Brasil. Para fazer isso, podemos utilizar a função mask(), que sobrepõe a imagem no mapa de vetores, e transforma em NA todos os dados que estão fora do mapa. Note que dentro da mask utilizamos crop(); essa função recorta a imagem original, para que a imagem final tenha extensões do mapa de vetores.

recorte = mask(crop(irrig, munip), munip)

 

Feito isso, podemos então visualizar diretamente os dados brasileiros. Queremos trabalhar com o ggplot2 devido a seu grande número de funcionalidades, porém ele não recebe objetos do tipo SpatRaster. Então, utilizamos a função gplot() do pacote rasterVis, que interage com esses objetos e recebe argumentos do ggplot. Abaixo, visualizamos o gráfico final:

library(rasterVis)
library(ggplot2)
library(stringr)

gplot(recorte, maxpixels = 1000000) + geom_tile(aes(fill = factor(value)))+
ggtitle("Distribuição da produção agrícola em relação ao uso de irrigação em 2010",
subtitle = 'Dados classificados por principais produtos e oferta de água') +
scale_fill_manual(values = c('#414952', '#c42f0e', '#ff773d',
'#de9f00', '#3dccff', '#0495c9',
'#4824ff', '#140078', '#00ba63',
'#bdbdbd'),
labels = lapply(c('Dados não identificados',
'Irrigação: Arroz e trigo',
'Irrigação: Trigo, arroz, cevada e soja',
'Irrigação: Trigo, milho, arroz, algodão e pomares',
'Chuva: Trigo, arroz, soja, cana-de-açúcar, milho e mandioca',
'Chuva: Trigo e cevada',
'Chuva: Milho e soja',
'Chuva: Trigo, milho, arroz, cevada, soja',
'Plantação em pequena quantidade',
'Sem dados',
''), str_wrap, 30)) +
theme_minimal() +
theme(legend.title = element_blank(),
panel.grid = element_blank(),
axis.text = element_blank(),
axis.title = element_blank(),
legend.key.height=unit(1, "cm"))

_____________________

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como planejar um pipeline de previsão macroeconômica: da coleta ao dashboard

Montar um pipeline de previsão macroeconômica não é apenas uma tarefa técnica — é um exercício de integração entre dados, modelos e automação. Neste post, apresento uma visão geral de como estruturar esse processo de ponta a ponta, da coleta de dados até a construção de um dashboard interativo, que exibe previsões automatizadas de inflação, câmbio, PIB e taxa Selic.

Coletando e integrando dados do BCB, IBGE e IPEA de forma automatizada

Quem trabalha com modelagem e previsão macroeconômica sabe o quanto é demorado reunir dados de diferentes fontes — Banco Central, IBGE, IPEA, FRED, IFI... Cada um com sua API, formato, frequência e estrutura. Esse gargalo de coleta e padronização consome tempo que poderia estar sendo usado na análise, nos modelos ou na comunicação dos resultados.

Foi exatamente por isso que criamos uma rotina de coleta automatizada, que busca, trata e organiza séries temporais econômicas diretamente das APIs oficiais, pronta para ser integrada a pipelines de previsão, dashboards ou agentes de IA econometristas.

Criando operações SQL com IA Generativa no R com querychat

No universo da análise de dados, a velocidade para obter respostas é um diferencial competitivo. Frequentemente, uma simples pergunta de negócio — “Qual foi nosso produto mais vendido no último trimestre na região Nordeste?” — inicia um processo que envolve abrir o RStudio, escrever código dplyr ou SQL, executar e, finalmente, obter a resposta. E se pudéssemos simplesmente perguntar isso aos nossos dados em português, diretamente no nosso dashboard Shiny?

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.