Hackeando o R: Rodando uma regressão com métodos bayesianos

No Hackeando o R de hoje, vamos finalizar a série sobre estatística bayesiana mostrando como pode ser feita a estimação de um modelo linear simples com MCMC. Diferentemente do método padrão, onde consideramos que a variável de resposta tem distribuição normal após controlarmos para efeitos lineares, os métodos bayesianos permitem maior liberdade quanto às hipóteses tomadas, dado que essencialmente tornam a estimação de parâmetros um problema de seleção de crenças iniciais. No caso a seguir, iremos fazer uma regressão linear robusta, supondo que a distribuição é na verdade uma t de Student.

A distribuição t em sua forma generalizada possui três parâmetros, de média, escala e seus graus de liberdade. Destes, a média é o de maior interesse, pois deve corresponder à previsão do modelo, que, conforme conhecemos, possui dois parâmetros (constante e linear). Note que, com isso, a estimação de y depende de um parâmetro que depende de outros dois, o que torna esse um modelo hierarquizado. Para rodarmos o algoritmo de MCMC, geramos crenças a priori dos parâmetros 'de ponta', e construímos a condicional em passos. Abaixo, geramos o modelo com distribuições usuais:

modelString = "
data {
Ntotal = length(y)
xm = mean(x)
ym = mean(y)
xsd = sd(x)
ysd = sd(y)
for ( i in 1:length(y) ) {
zx[i] = ( x[i] - xm ) / xsd
zy[i] = ( y[i] - ym ) / ysd
}
}

model {
for ( i in 1:Ntotal ) {
zy[i] ~ dt( zbeta0 + zbeta1 * zx[i] , 1/zsigma^2 , nu )
}

zbeta0 ~ dnorm( 0 , 1/(10)^2 ) 
zbeta1 ~ dnorm( 0 , 1/(10)^2 )
zsigma ~ dunif( 1.0E-3 , 1.0E+3 )
nu ~ dexp(1/30.0)

beta1 = zbeta1 * ysd / xsd 
beta0 = zbeta0 * ysd + ym - zbeta1 * xm * ysd / xsd 
sigma = zsigma * ysd
}
"
writeLines( modelString , con="TEMPmodel.txt" )

É importante notar que fizemos a padronização dos dados para rodar o modelo. Isso não é necessário, porém facilita a convergência do MCMC. Após isso, basta carregar os dados, disponíveis aqui,
e rodar o modelo.

myData = read.csv(file="HtWtData30.csv" )
xName = "height" ; yName = "weight"

y = myData[,yName]
x = myData[,xName]

dataList = list(
x = x ,
y = y
)

library(rjags)

parameters = c("beta0", "beta1", "sigma", "nu" )

jagsModel = jags.model( "TEMPmodel.txt" , data=dataList ,
n.chains=4 , n.adapt=500)

codaSamples = coda.samples(jagsModel, variable.names = parameters,
n.iter= 50000, thin=1)

plot(codaSamples)

___________

(*) Gostou? Conheça nosso Curso de Estatística Bayesiana usando o R.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

O que é Agentic RAG e o que o diferencia de RAG?

Neste post, explicamos o que é o Agentic RAG, como ele se diferencia do RAG tradicional e apresentamos um estudo de caso construído com base nas Atas do COPOM, mostrando passo a passo como criar um agente que busca, avalia, reescreve e responde perguntas sobre política monetária.

Como Criar um Agente de IA Econometrista

Criar um Agente de IA Econometrista envolve construir um sistema autônomo capaz de entender uma solicitação em linguagem natural, buscar dados econômicos, realizar análises e aplicar modelos econométricos para entregar uma resposta completa. A abordagem mais eficaz é estruturar o sistema em múltiplos agentes especializados, cada um com um papel definido, que colaboram para resolver a tarefa. Neste post abordamos o desenvolvimento deste sistema de IA com Python.

Como criar um Agente de IA analista de dados

Agentes de IA podem automatizar a coleta, tratamento e análise de indicadores econômicos, entregando insights prontos para a tomada de decisão. Combinando modelos de linguagem (LLM) avançados com ferramentas de acesso a dados, é possível construir soluções que buscam informações em tempo real e as processam de forma autônoma. Neste post mostramos uma visão geral sobre como isso tudo funciona.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.