Implementando regressões simples no R

Regredir um variável x contra uma variável y é um poderoso recurso estatístico. De modo a explicar o método, suponha que estamos interessados em estimar os parâmetros populacionais \beta_0 e \beta_1 de um modelo de regressão simples

(1)   \begin{align*} y = \beta_0 + \beta_1 x + u  \end{align*}

a partir de uma amostra aleatória de y e x. Os estimadores de Mínimos Quadrados Ordinários (MQO) serão

(2)   \begin{align*} \hat{\beta}_0 &= \hat{y} - \hat{\beta_1} \bar{x} \\ \hat{\beta_1} &= \frac{Cov(x,y)}{Var{x}}. \end{align*}

Baseado nos parâmetros estimados, a reta de regressão será

(3)   \begin{align*} \hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x. \end{align*}

Para uma dada amostra, nós precisaremos calcular as quatro estatísticas \bar{y}, \bar{x}, Cov(x,y) e Var(x) e colocá-las nessas equações. Para ilustrar, vamos considerar o exemplo 2.3 de Wooldridge (2013) sobre Salários de CEOs e Retornos sobre o patrimônio. Para isso, considere o seguinte modelo

(4)   \begin{align*} salary = \beta_0 + \beta_1 roe + u \end{align*}

onde salary é o salário anual de CEO em milhares de dólares e roe é o retorno médio sobre o patrimônio em percentual. O parâmetro \beta_1 irá medir a variação no salário anual quando o retorno médio sobre o patrimônio aumentar em um ponto percentual. Para estimar esse modelo, podemos utilizar o conjunto de dados ceosal1. Podemos dar uma olhada nas variáveis do conjunto de dados cesal1 a partir do pacote wooldridge como abaixo.


data(ceosal1, package='wooldridge')
attach(ceosal1)

Uma vez que tenhamos carregado o conjunto de dados, podemos calcular manualmente os parâmetros \beta_0 e \beta_1, como abaixo.


# Cálculo manual dos parâmetros
b1hat = cov(roe,salary)/var(roe)
b0hat = mean(salary) - b1hat*mean(roe)

Isto é, a reta de regressão será dada por

(5)   \begin{align*} \hat{salary} = 963,191 + 18,501 * roe \end{align*}

o que pode ser facilmente obtido com o código abaixo:


lm(salary ~ roe)

Implicando que para um roe = 0, teremos um salário previsto de 963,19 ou US$ 963.191, que é o intercepto. Ademais, se \Delta roe = 1, então \Delta salary = 18,5 ou US$ 18.501. Podemos, por fim, desenhar a reta de regressão com o código abaixo.


CEOregress = lm(salary ~ roe)
plot(roe, salary, ylim=c(0,4000))
abline(CEOregress, col='red')

Vamos continuar nossa revisão de modelos de regressão simples com o conjunto de dados wage1. Estamos interessados agora em estudar a relação entre educação e salários, de modo que o nosso modelo de regressão será

(6)   \begin{align*} wage = \beta_0 + \beta_1 education + u. \end{align*}

O que pode ser obtido com o código abaixo.


modelo = lm(wage ~ educ, data=wage1)
modelo

Isto é, teremos a seguinte reta de regressão

(7)   \begin{align*} \hat{wage} = -0,9 + 0,54 * education \end{align*}

de modo que um ano adicional de estudo implica em mais 54 centavos à hora de trabalho. O objeto obtido com a função lm contém todas as informações relevantes de uma regressão. Abaixo, acessamos os elementos do objeto CEOregress:


names(CEOregress)
CEOregress$coefficients

Podemos obter os valores ajustados:


plot(CEOregress$fitted.values)

E os resíduos:


plot(CEOregress$residuals)

Por fim, podemos ainda obter um sumário de todas as estatísticas relevantes da regressão com a função abaixo.


summary(CEOregress)

O que podemos gerar como tabela com o pacote stargazer como abaixo.

Dependent variable:
salary
roe 18.501*
(11.123)
Constant 963.191***
(213.240)
Observations 209
R2 0.013
Adjusted R2 0.008
Residual Std. Error 1,366.555 (df = 207)
F Statistic 2.767* (df = 1; 207)
Note: *p<0.1; **p<0.05; ***p<0.01

Gostou? Isso e muito mais você aprende em nosso Curso de Introdução à Econometria usando o R.

__________________

(*) Wooldridge, J. M. Introductory Econometrics: A Modern Approach. Editora Cengage, 2013.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Analisando o sentimento da política monetária com IA usando Python

Análise de sentimentos é uma técnica de Processamento de Linguagem Natural (PLN) que serve para revelar o sentimento contido em um texto. Neste exercício, aplicamos esta técnica para analisar as atas das reuniões do COPOM, revelando o que os diretores de política monetária discutem nas entrelinhas. Utilizando um modelo de Inteligência Artificial através do Python, produzimos ao final um índice de 0 a 100 para sintetizar a análise histórica.

Como a IA pode auxiliar na otimização de Portfólio de Investimentos?

A construção de portfólio ótimo refere-se ao processo de alocar eficientemente capital entre um conjunto predefinido de ativos ou títulos. O campo da construção de portfólio tem sido extensivamente estudado por acadêmicos e profissionais desde a década de 1950, quando Markowitz introduziu sua inovadora abordagem de média-variância para a construção de portfólio. Diante disso, podemos melhorar o processo de alocação de peso de um investimento em um portfólio através do Aprendizado não supervisionado com a aplicação do Hierarchical Risk Parity (HRP). Neste exercício, realizamos uma introdução ao método e mostramos os resultados de um exemplo criado através do Python.

Prevendo múltiplas séries usando IA no Python

Como podemos realizar previsões para várias séries temporais simultaneamente? Para abordar essa questão, empregamos a biblioteca MLForecastdo Python. Esta biblioteca disponibiliza uma variedade de modelos e funcionalidades para realizar previsões em séries temporais utilizando técnicas de aprendizado de máquina. Demonstramos sua aplicação ao prever as curvas de energia horária em quatro regiões distintas do Brasil.

Esse exercício é uma continuação do exercício “Usando IA para prever o consumo de energia no Brasil com Python”.

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.