Testes de Hipóteses sobre um único parâmetro: o teste t

Um importante tipo de hipótese que estamos interessados é o da forma em que:

(1)   \begin{align*} H_0 : \beta_j = a_j, \end{align*}

onde a_j é um número dado [em geral, a_j = 0]. Para a maioria dos testes bicaudais, a hipótese alternativa implica em:

(2)   \begin{align*} H_1 : \beta_j \neq a_j, \end{align*}

e para testes unicaudais, ou temos:

(3)   \begin{align*} H_1 : \beta_j < a_j \quad ou \quad \beta_j > a_j. \end{align*}

Essas hipóteses podem ser testadas usando um teste t que é baseado na seguinte estatística:

(4)   \begin{align*} t = \frac{\hat{\beta_j} - a_j}{ep(\hat{\beta_j})}. \end{align*}

Se H_0 é verdadeira, essa estatística possui uma distribuição t com n-k-1 graus de liberdade. Para ilustrar, estimamos uma função para o log do salário-hora. Assim, temos os parâmetros dos retornos percentuais de cada entrada no modelo. Podemos avaliar se, por exemplo, depois de controlar por educação e titularidade, experiência ainda tem um efeito estatisticamente significante no salário-hora.


library(wooldridge)

data("wage1") # puxamos os dados

summary(lm(log(wage) ~ educ + exper + tenure, data=wage1))

E abaixo, a saída da regressão.

E de fato, a 5\% de significância existe um efeito para experiência. Mais especificamente, um ano a mais de experiência na média se traduz em 0,41\% de aumento salarial. Observe ainda que a estatística t pode ser calculada como sendo o parâmetro \beta_j estimado sobre o erro-padrão. Para o caso da experiência, temos 0.004121/0.001723, que é igual a 2,39. Em outras palavras, podemos rejeitar a hipótese nula que \beta_j = 0.

__________________________

(*) Isso e muito mais você aprende em nosso Curso de Introdução à Econometria usando o R.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como importar os textos do COPOM para análise de sentimentos no Python?

Os textos divulgados pelo COPOM, sejam os comunicados ou atas, são o ponto de partida para diversos tipos de análises quantitativas, como a análise de sentimentos, e qualitativas, como uma análise de cenário econômico. Neste artigo, mostramos como coletar estes textos de forma automatizada usando web scrapping e Python.

Como tratar dados no Python? Parte 5: renomeando colunas

Como dar novos nomes significativos para as colunas em uma tabela de dados usando Python? Neste tutorial mostramos os métodos de renomeação de colunas disponíveis na biblioteca pandas, que tem como vantagem sua sintaxe simples e prática.

Como tratar dados no Python? Parte 4: operações por grupos

Como mensalizar dados diários? Ou como filtrar os valores máximos para diversas categorias em uma tabela de dados usando Python? Estas perguntas são respondidas com os métodos de operações por grupos. Neste tutorial mostramos estes métodos disponíveis na biblioteca pandas, que tem como vantagem sua sintaxe simples e prática.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.