Transformando preços em log-retornos mensais com o R tidyquant

No post anterior, eu mostrei como é possível coletar os preços de ações com o R através do pacote quantmod, utilizando a base de dados do Yahoo Finance. Essa representação dos dados, contudo, não é a mais conveniente para a gestão de portfólios, como veremos no nosso Novo Curso Mercado Financeiro e Gestão de Portfólios. Para fins de construção de portfólios, é conveniente usarmos os retornos ou log-retornos dos ativos. De fato, uma grande parte dos estudos financeiros envolve retorno, ao invés de preço, de ativos. Isto porque, retorno de ativos pode ser um completo sumário para oportunidades de investimento, bem como séries de retorno são mais fáceis de lidar do que séries de preço porque aquelas possuem propriedades estatísticas mais atrativas.

Há, entretanto, diversas definições de retorno de ativos. Tomando P_t como o preço de um ativo no tempo t, considerando que a princípio o ativo não paga dividendos, ao manter um ativo por um período de t-1 a t, isso resultaria em um retorno bruto simples de

(1)   \begin{align*} 1 + R_t = \frac{P_t}{P_{t-1}} \end{align*}

O retorno líquido ou simples então será de

(2)   \begin{align*} R_t = \frac{P_t}{P_{t-1}} - 1 = \frac{P_t - P_{t-1}}{P_{t-1}} \end{align*}

Já o logaritmo natural do retorno bruto simples de um ativo é chamado de retorno composto continuamente ou simplesmente log-retorno:

(3)   \begin{align*} r_t = \text{ln} (1+R_t) = \text{ln} \frac{P_t}{P_{t-1}} = p_t - p_{t-1} \end{align*}

onde p_t = ln (P_t).  A seguir, pegamos nossas ações coletadas no post anterior e calculamos os log-retornos mensais com o pacote tidyquant.


library(tidyverse)
library(tidyquant)
library(timetk)
library(scales)
library(quantmod)

prices = getSymbols(symbols, src='yahoo',
from='2019-01-01',
to='2020-04-20',
warning=FALSE) %>%
map(~Cl(get(.))) %>%
reduce(merge) %>%
`colnames<-` (symbols) %>%
tk_tbl(preserve_index = TRUE,
rename_index = 'date') %>%
drop_na()

returns = prices %>%
gather(asset, prices, -date) %>%
group_by(asset) %>%
tq_transmute(mutate_fun = periodReturn,
period='monthly',
type='log') %>%
spread(asset, monthly.returns) %>%
select(date, symbols)

A seguir, construímos um gráfico desses retornos.


ggplot(returns, aes(x=date))+
geom_line(aes(y=PETR4.SA, colour='PETR4'))+
geom_line(aes(y=ABEV3.SA, colour='ABEV3'))+
geom_line(aes(y=MGLU3.SA, colour='MGLU3'))+
geom_line(aes(y=VVAR3.SA, colour='VVAR3'))+
scale_colour_manual('',
values=c('PETR4'='blue',
'ABEV3'='red',
'MGLU3'='orange',
'VVAR3'='green'))+
scale_x_date(breaks = date_breaks("1 month"),
labels = date_format("%b/%Y"))+
theme(axis.text.x=element_text(angle=45, hjust=1),
legend.position = 'bottom',
plot.title = element_text(size=10, face='bold'))+
labs(x='', y='',
title='Log-Retornos mensais de ações brasileiras selecionadas',
caption='Fonte: analisemacro.com.br com dados do Yahoo Finance')

Observa-se uma queda forte no mês de março por conta da pandemia do coronavírus, como era esperado.

(*) Isso e muito mais você irá aprender no nosso Novo Curso Mercado Financeiro e Gestão de Portfólios.


Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Análise de impacto fiscal sobre o dolár com Python

Usamos uma cesta de 12 moedas para construir um cenário contrafactual da taxa de câmbio após o último anúncio de pacote fiscal, com base em modelagem Bayesiana. No período, o dolár depreciou quase 5% e passou os R$ 6,15, enquanto que na ausência da intervenção a moeda deveria estar cotada em R$ 5,78.

Resultado IBC-br - Outubro/2024

A Análise Macro apresenta os resultados da IBC-br de Outubro de 2024, com gráficos elaborados em Python para coleta, tratamento e visualização de dados. Todo o conteúdo, disponível exclusivamente no Clube AM, foi desenvolvido com base nos métodos ensinados nos cursos da Análise Macro, permitindo aos assinantes acesso aos códigos e replicação das análises.

Resultado PMC - Outubro/2024

A Análise Macro apresenta os resultados da PMC de Outubro de 2024, com gráficos elaborados em Python para coleta, tratamento e visualização de dados. Todo o conteúdo, disponível exclusivamente no Clube AM, foi desenvolvido com base nos métodos ensinados nos cursos da Análise Macro, permitindo aos assinantes acesso aos códigos e replicação das análises.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.