Visualizando os preços de ações com o R

Nosso objetivo no novo Curso Mercado Financeiro e Gestão de Portfólios da área de finanças da Análise Macro será o de proporcionar tanto uma introdução dos alunos ao mercado financeiro quanto o de munir os mesmos com ferramentas analíticas para gestão de portfólios e tratamento/visualização de dados. Para ilustrar, vamos ver como é possível coletar dados de preços de ações a partir da base de dados online do Yahoo Finance e visualizar os mesmos com o pacote ggplot2.

Com o código a seguir, nós estamos pegando os preços das ações da Petrobras, Ambev, Magazine Luíza e Via Varejo.


library(tidyverse)
library(tidyquant)
library(timetk)
library(scales)
library(quantmod)

symbols = c('PETR4.SA', 'ABEV3.SA', 'MGLU3.SA', 'VVAR3.SA')
prices = getSymbols(symbols, src='yahoo',
from='2019-01-01',
to='2020-04-20',
warning=FALSE) %>%
map(~Cl(get(.))) %>%
reduce(merge) %>%
`colnames<-` (symbols) %>%
tk_tbl(preserve_index = TRUE,
rename_index = 'date') %>%
drop_na()

Observe que o código já trata os dados, tanto colocando os mesmos em um tibble quanto eliminando os valores faltantes (missing values). Feito isso, podemos criar um gráfico de linhas com o pacote ggplot2.


filter(prices, date > '2019-09-01') %>%
ggplot(aes(x=date))+
geom_line(aes(y=PETR4.SA, colour='PETR4'))+
geom_line(aes(y=ABEV3.SA, colour='ABEV3'))+
geom_line(aes(y=MGLU3.SA, colour='MGLU3'))+
geom_line(aes(y=VVAR3.SA, colour='VVAR3'))+
scale_colour_manual('',
values=c('PETR4'='blue',
'ABEV3'='red',
'MGLU3'='orange',
'VVAR3'='green'))+
scale_x_date(breaks = date_breaks("14 days"),
labels = date_format("%d/%b"))+
theme(axis.text.x=element_text(angle=45, hjust=1),
legend.position = 'bottom')+
labs(x='', y='R$',
title='Preços de ações brasileiras selecionadas',
caption='Fonte: analisemacro.com.br com dados do Yahoo Finance')

A partir daí, podemos criar os retornos das ações e partir para a construção do nosso portfólio.

Você as colocaria no seu?

(*) Isso e muito mais você irá aprender no nosso Novo Curso Mercado Financeiro e Gestão de Portfólios.


Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Previsão do Ibovespa utilizando IA (TimeGPT) + Python

Historicamente, métodos estatísticos como ARIMA, ETS, MSTL, Theta e CES têm sido confiavelmente empregados em diversos domínios. Na última década, modelos de aprendizado de máquina como XGBoost e LightGBM ganharam popularidade. Agora, podemos entrar em uma nova fase na era da previsão: o uso da IA Generativa para a previsão de séries temporais. Neste exercício, demonstramos de forma introdutória o TimeGPT e criamos um exemplo usando o Ibovespa.

Previsão do Ibovespa com Chain-of-Thought + Python

Realizar previsões de séries financeiras é uma tarefa inglória. Ainda mais quando utiliza-se uma variável tão errática quanto um índice de mercado. Mas, e se ao invés de utilizarmos modelos já conhecidos, fazermos o uso da IA Generativa? Neste exercício usamos Gemini, Python e técnicas de Engenharia de Prompt e Árvore de Pensamento para prever o Ibovespa.

Modelo de Previsão da Dívida Bruta do Governo Geral (DBGG) para 2025

Neste exercício, contruímos um algoritmo simples de cenarização para a Dívida Bruta do Governo Geral (DBGG) em % do PIB, usando apenas dados públicos, simulações estatísticas, a literatura recente e a linguagem R. Em uma abordagem semi-automatizada, as simulações do modelo se aproximam das previsões do mercado para o ano de 2025.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.